Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Open ; 11(10)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36239241

RESUMEN

The morphological characteristics that impact feeding ecology in ectotherms, particularly reptiles, are poorly understood. We used morphometric measures and stable isotope analysis (carbon-13 and nitrogen-15) to assess the link between diet and functional morphology in an island population of an evolutionarily unique reptile, the tuatara (Sphenodon punctatus). First, we established a significant positive correlation between overall body size, gape size, and fat store in tuatara (n=56). Next, we describe the relationship between stable isotope profiles created from whole blood and nail trim samples and demonstrate that nail trims offer a low-impact method of creating a long-term dietary profile in ectotherms. We used nitrogen-15 values to assess trophic level in the population and found that tuatara on Takapourewa forage across multiple trophic levels. Finally, we found a significant relationship between gape size and carbon-13 (linear regression: P<0.001), with tuatara with large gapes showing dietary profiles that suggest a higher intake of marine (seabird) prey. However, whether body size or gape size is the primary adaptive characteristic allowing for more optimal foraging is yet unknown. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Dieta , Reptiles , Animales , Tamaño Corporal , Isótopos de Carbono , Humanos , Isótopos de Nitrógeno
2.
J Hered ; 112(4): 346-356, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33908605

RESUMEN

Population bottlenecks can reduce genetic diversity and may lead to inbreeding depression. However, some studies have provided evidence that long lifespans buffer negative genetic effects of bottlenecks. Others have cautioned that longevity might merely mask the effects of genetic drift, which will still affect long-term population viability. We used microsatellite data from actual populations of tuatara (Sphenodon punctatus) and eastern massasaugas (Sistrurus catenatus) as a starting point for simulated population declines to evaluate the performance of bottleneck tests under a range of scenarios. We quantified losses in genetic diversity for each scenario and assessed the power of commonly used tests (i.e., M-ratio, heterozygosity excess, and mode-shift) to detect known bottlenecks in these moderate- to long-lived species. Declines in genetic diversity were greater in bottlenecks simulated for eastern massasaugas, the shorter-lived species, and mode-shift and heterozygosity excess tests were more sensitive to population declines in this species. Conversely, M-ratio tests were more sensitive to bottlenecks simulated in tuatara. Despite dramatic simulated population declines, heterozygosity excess and mode-shift tests often failed to detect bottlenecks in both species, even when large losses in genetic diversity had occurred (both allelic diversity and heterozygosity). While not eliminating type II error, M-ratio tests generally performed best and were most reliable when a critical value (Mc) of 0.68 was used. However, in tuatara simulations, M-ratio tests had high rates of type I error when Mc was calculated assuming θ = 10. Our results suggest that reliance on these tests could lead to misguided species management decisions.


Asunto(s)
Crotalus , Genética de Población , Animales , Flujo Genético , Variación Genética , Repeticiones de Microsatélite
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA