Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 336: 139189, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37307926

RESUMEN

In this study, the oxidation of 1-naphthol (1-NAP) and 2-naphthol (2-NAP) by Fe(VI) was investigated. The impacts of operating factors were investigated through a series of kinetic experiments, including Fe(VI) dosages, pH and coexisting ions (Ca2+, Mg2+, Cu2+, Fe3+, Cl-, SO42-, NO3- and CO32-). Almost 100% elimination of both 1-NAP and 2-NAP could be achieved within 300 s at pH 9.0 and 25 °C. Cu2+ could significantly improve the degradation efficiency of 1-NAP and 2-NAP, but the impacts of other ions were negligible. The liquid chromatography-mass spectrometry was used to identify the transformation products of 1-NAP and 2-NAP in Fe(VI) system, and the degradation pathways were proposed accordingly. Electron transfer mediated polymerization reaction was the dominant transformation pathway in the elimination of NAP by Fe(VI) oxidation. After 300 s of oxidation, heptamers and hexamers were found as the final coupling products during the removal of 1-NAP and 2-NAP, respectively. Theoretical calculations demonstrated that the hydrogen abstraction and electron transfer reaction would easily occur at the hydroxyl groups of 1-NAP and 2-NAP, producing NAP phenoxy radicals for subsequent coupling reaction. Moreover, since the electron transfer reactions between Fe(VI) and NAP molecules were barrierless and could occur spontaneously, the theoretical calculation results also confirmed the priority of coupling reaction in Fe(VI) system. This work indicated that the Fe(VI) oxidation was an effective way for removing naphthol, which may help us understand the reaction mechanism between phenolic compounds with Fe(VI).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Naftoles , Cinética , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
2.
Saudi J Biol Sci ; 25(2): 278-284, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29472778

RESUMEN

Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. The present study reports the side effects of KBrO3 administration in Swiss mice. Animals were randomly divided into three groups: control, low dose KBrO3 (100 mg/kg/day) and high dose KBrO3 (200 mg/kg/day) groups. Administration of KBrO3 led to decreased white blood corpuscles (WBCs), red blood corpuscles (RBCs) and platelets count in the animals of both the high and the low dose groups. Altered lipid profile represented as low density lipoprotein (LDL), high density lipoprotein (HDL) and cholesterol levels were observed in plasma samples of both KBrO3 treated groups of mice. Also, an increased plasma level of LDH was detected in both KBrO3 treated groups. Histological investigations showed impaired renal and hepatic histology that was concomitant with increased plasma Creatinine level in both of KBrO3-treated groups. Nevertheless, decreased glutathione (GSH) level in both renal and hepatic tissue of mice after KBrO3 intake was detected. These results show that KBrO3 has serious damaging effects and therefore, its use should be avoided.

3.
Behav Brain Funct ; 12(1): 14, 2016 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-27169539

RESUMEN

BACKGROUND: Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. The present study reports the side effects of KBrO3 administration on the brain functions and behaviour of albino mice. METHODS: Animals were divided into three groups: control, low dose KBrO3 (100 mg/kg/day) and high dose KBrO3 (200 mg/kg/day) groups. RESULTS: Administration of KBrO3 led to a significant change in the body weight in the animals of the high dose group in the first, second and the last weeks while water consumption was not significantly changed. Neurobehavioral changes and a reduced Neurotransmitters levels were observed in both KBrO3 groups of mice. Also, the brain level of reduced glutathione (GSH) in KBrO3 receiving animals was decreased. Histological studies favoured these biochemical results showing extensive damage in the histological sections of brain of KBrO3-treated animals. CONCLUSIONS: These results show that KBrO3 has serious damaging effects on the central nervous system and therefore, its use should be avoided.


Asunto(s)
Bromatos/administración & dosificación , Administración Oral , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Bromatos/toxicidad , Relación Dosis-Respuesta a Droga , Aditivos Alimentarios/administración & dosificación , Aditivos Alimentarios/toxicidad , Glutatión/metabolismo , Masculino , Ratones , Neurotransmisores/administración & dosificación , Neurotransmisores/toxicidad , Estrés Oxidativo/efectos de los fármacos
4.
Behav Brain Funct ; 11: 7, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25888881

RESUMEN

BACKGROUND: Diabetes Mellitus (DM) is associated with pathological changes in the central nervous system (CNS) and alterations in oxidative stress. The aim of this study was to determine whether dietary supplement with whey protein (WP) could improve neurobehavior, oxidative stress and neuronal structure in the CNS. METHODS: Animals were distributed in three groups, a control group (N), a diabetic mellitus group (DM) and a DM group orally supplemented with WP (WP). RESULTS: The DM group of animals receiving WP had reduced blood glucose, significantly decreased free radical Diphenyl-picrylhydrazyl (DPPH) and lower lipid peroxidation in brain tissue. The WP group of animals showed improvement in balancing, coordination and fore-limb strength, oxidative stress and neuronal structure. CONCLUSION: The results of this study show that dietary supplementation with WP reduced oxidative stress, protected CNS neurons and improved the neurobehavior of diabetic mice.


Asunto(s)
Conducta Animal/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Diabetes Mellitus Experimental/psicología , Fármacos Neuroprotectores/farmacología , Proteína de Suero de Leche/farmacología , Animales , Compuestos de Bifenilo/metabolismo , Glucemia/metabolismo , Encéfalo/patología , Camelus , Diabetes Mellitus Experimental/patología , Fuerza de la Mano , Humanos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Oxidación-Reducción , Picratos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...