Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 27(7): 2147-2156.e5, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091452

RESUMEN

Intracellular Salmonella use a type III secretion system (TTSS) to translocate effector proteins across the phagosome membrane and thus promote vacuole membrane tubulation, resulting in intracellular survival. This work demonstrates that the effector SseJ binds the eukaryotic lipid transporter oxysterol binding protein 1 (OSBP1). SseJ directs OSBP1 to the endosomal compartment in a manner dependent on the TTSS located on Salmonella pathogenicity island 2 (SPI2). OSBP1 localization is mediated by both SseJ and another OSBP1-binding SPI2 translocated effector, the deubiquitinase SseL. Deletion of both SseJ and SseL reduced vacuolar integrity with increased bacteria released into the eukaryotic cytoplasm of epithelial cells, indicating that their combined activities are necessary for vacuole membrane stability. Cells knocked down for OSBP1 or deleted for the OSBP1-binding proteins VAPA/B also demonstrate loss of vacuole integrity, consistent with the hypothesis that OSBP1 recruitment is required for SPI2-mediated alterations that promote vacuolar integrity of salmonellae.


Asunto(s)
Membranas Intracelulares/metabolismo , Fagosomas/metabolismo , Receptores de Esteroides/metabolismo , Salmonella typhimurium/metabolismo , Vacuolas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/microbiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fagosomas/genética , Fagosomas/microbiología , Receptores de Esteroides/genética , Salmonella typhimurium/genética , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Vacuolas/genética , Vacuolas/microbiología
2.
Sci Signal ; 11(558)2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30482849

RESUMEN

The outer membranes of Gram-negative bacteria and mitochondria contain proteins with a distinct ß-barrel tertiary structure that could function as a molecular pattern recognized by the innate immune system. Here, we report that purified outer membrane proteins (OMPs) from different bacterial and mitochondrial sources triggered the induction of autophagy-related endosomal acidification, LC3B lipidation, and p62 degradation. Furthermore, OMPs reduced the phosphorylation and therefore activation of the multiprotein complex mTORC2 and its substrate Akt in macrophages and epithelial cells. The cell surface receptor SlamF8 and the DNA-protein kinase subunit XRCC6 were required for these OMP-specific responses in macrophages and epithelial cells, respectively. The addition of OMPs to mouse bone marrow-derived macrophages infected with Salmonella Typhimurium facilitated bacterial clearance. These data identify a specific cellular response mediated by bacterial and mitochondrial OMPs that can alter inflammatory responses and influence the killing of pathogens.


Asunto(s)
Autofagia , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/patología , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Membranas Mitocondriales/patología , Monocitos/patología , Infecciones por Salmonella/patología , Animales , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Membranas Mitocondriales/metabolismo , Monocitos/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/aislamiento & purificación , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo
3.
Curr Biol ; 26(14): 1791-801, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27345162

RESUMEN

Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes.


Asunto(s)
Autofagia/genética , Expresión Génica , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo
4.
Cell Host Microbe ; 14(2): 183-94, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23954157

RESUMEN

Upon transit to colonization sites, bacteria often experience critical priming that prepares them for subsequent, specific interactions with the host; however, the underlying mechanisms are poorly described. During initiation of the symbiosis between the bacterium Vibrio fischeri and its squid host, which can be observed directly and in real time, approximately five V. fischeri cells aggregate along the mucociliary membranes of a superficial epithelium prior to entering host tissues. Here, we show that these few early host-associated symbionts specifically induce robust changes in host gene expression that are critical to subsequent colonization steps. This exquisitely sensitive response to the host's specific symbiotic partner includes the upregulation of a host endochitinase, whose activity hydrolyzes polymeric chitin in the mucus into chitobiose, thereby priming the symbiont and also producing a chemoattractant gradient that promotes V. fischeri migration into host tissues. Thus, the host responds transcriptionally upon initial symbiont contact, which facilitates subsequent colonization.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Decapodiformes/fisiología , Simbiosis , Animales , Factores Quimiotácticos/metabolismo , Quitina/metabolismo , Quitinasas/metabolismo , Disacáridos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Moco/metabolismo , Análisis de Secuencia de ADN
5.
Environ Microbiol ; 15(11): 2937-50, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23819708

RESUMEN

We studied the Euprymna scolopes-Vibrio fischeri symbiosis to characterize, in vivo and in real time, the transition between the bacterial partner's free-living and symbiotic life styles. Previous studies using high inocula demonstrated that environmental V. fischeri cells aggregate during a 3 h period in host-shed mucus along the light organ's superficial ciliated epithelia. Under lower inoculum conditions, similar to the levels of symbiont cells in the environment, this interaction induces haemocyte trafficking into these tissues. Here, in experiments simulating natural conditions, microscopy revealed that at 3 h following first exposure, only ∼ 5 V. fischeri cells aggregated on the organ surface. These cells associated with host cilia and induced haemocyte trafficking. Symbiont viability was essential and mutants defective in symbiosis initiation and/or production of certain surface features, including the Mam7 protein, which is implicated in host cell attachment of V. cholerae, associated normally with host cilia. Studies with exopolysaccharide mutants, which are defective in aggregation, suggest a two-step process of V. fischeri cell engagement: association with host cilia followed by aggregation, i.e. host cell-symbiont interaction with subsequent symbiont-symbiont cell interaction. Taken together, these data provide a new model of early partner engagement, a complex model of host-symbiont interaction with exquisite sensitivity.


Asunto(s)
Aliivibrio fischeri/patogenicidad , Adhesión Bacteriana/fisiología , Cilios/microbiología , Decapodiformes/microbiología , Simbiosis/fisiología , Animales , Adhesión Bacteriana/genética , Proteínas Bacterianas/metabolismo , Ambiente , Epitelio/microbiología , Hemocitos/fisiología , Interacciones Huésped-Patógeno/genética , Luz , Membrana Mucosa/microbiología , Polisacáridos Bacterianos/genética
6.
Cell Microbiol ; 13(4): 527-37, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21091598

RESUMEN

Bacterial pathogens typically upregulate the host's production of nitric oxide synthase (NOS) and nitric oxide (NO) as antimicrobial agents, a response that is often mediated by microbe-associated molecular patterns (MAMPs) of the pathogen. In contrast, previous studies of the beneficial Euprymna scolopes/Vibrio fischeri symbiosis demonstrated that symbiont colonization results in attenuation of host NOS/NO, which occurs in high levels in hatchling light organs. Here, we sought to determine whether V. fischeri MAMPs, specifically lipopolysaccharide (LPS) and the peptidoglycan derivative tracheal cytotoxin (TCT), attenuate NOS/NO, and whether this activity mediates the MAMPs-induced light organ morphogenesis. Using confocal microscopy, we characterized levels of NOS with immunocytochemistry and NO with a NO-specific fluorochrome. When added exogenously to seawater containing hatchling animals, V. fischeri LPS and TCT together, but not individually, induced normal NOS/NO attenuation. Further, V. fischeri mutants defective in TCT release did not. Experiments with NOS inhibitors and NO donors provided evidence that NO mediates apoptosis and morphogenesis associated with symbiont colonization. Attenuation of NOS/NO by LPS and TCT in the squid-vibrio symbiosis provides another example of how the host's response to MAMPs depends on the context. These data also provide a mechanism by which symbiont MAMPs regulate host development.


Asunto(s)
Aliivibrio fischeri/fisiología , Decapodiformes/microbiología , Interacciones Huésped-Patógeno , Óxido Nítrico/metabolismo , Simbiosis/fisiología , Animales , Decapodiformes/anatomía & histología , Decapodiformes/metabolismo , Luz , Morfogénesis , Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo
7.
J Biol Chem ; 280(13): 12077-86, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15556935

RESUMEN

A scheme of eukaryotic phylogeny has been suggested based on the structure and physical linkage of the RNA triphosphatase and RNA guanylyltransferase enzymes that catalyze mRNA cap formation. Here we show that the unicellular pathogen Giardia lamblia encodes an mRNA capping apparatus consisting of separate triphosphatase and guanylyltransferase components, which we characterize biochemically. We also show that native Giardia mRNAs have blocked 5'-ends and that 7-methylguanosine caps promote translation of transfected mRNAs in Giardia in vivo. The Giardia triphosphatase belongs to the tunnel family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, microsporidia, and protozoa such as Plasmodium and Trypanosoma. The tunnel enzymes adopt a unique active-site fold and are structurally and mechanistically unrelated to the cysteine-phosphatase-type RNA triphosphatases found in metazoans and plants, which comprise part of a bifunctional triphosphataseguanylyltransferase fusion protein. All available evidence now points to the separate tunnel-type triphosphatase and guanylyltransferase as the aboriginal state of the capping apparatus. We identify a putative tunnel-type triphosphatase and a separate guanylyltransferase encoded by the red alga Cyanidioschyzon merolae. These findings place fungi, protozoa, and red algae in a common lineage distinct from that of metazoa and plants.


Asunto(s)
Giardia lamblia/fisiología , Guanosina/análogos & derivados , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Cationes , Centrifugación por Gradiente de Densidad , Cartilla de ADN/química , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Evolución Molecular , Giardia lamblia/genética , Glicerol/química , Guanosina/química , Guanosina Trifosfato/química , Concentración de Iones de Hidrógeno , Luciferasas/metabolismo , Metales/química , Modelos Biológicos , Datos de Secuencia Molecular , Nucleotidiltransferasas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Plásmidos/metabolismo , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN/química , ARN/metabolismo , Proteínas Recombinantes/química , Rhodophyta/enzimología , Homología de Secuencia de Aminoácido , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA