Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Microbiol ; 79: 102453, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678827

RESUMEN

Members of the PII superfamily are versatile, multitasking signaling proteins ubiquitously found in all domains of life. They adeptly monitor and synchronize the cell's carbon, nitrogen, energy, redox, and diurnal states, primarily by binding interdependently to adenyl-nucleotides, including charged nucleotides (ATP, ADP, and AMP) and second messengers such as Cyclic adenosine monophosphate, Cyclic di-adenosine monophosphate, and S-adenosylmethionine-AMP (SAM-AMP). These proteins also undergo a variety of posttranslational modifications, such as phosphorylation, adenylation, uridylation, carboxylation, and disulfide bond formation, which further provide cues on the metabolic state of the cell. Serving as precise metabolic sensors, PII superfamily proteins transmit this information to diverse cellular targets, establishing dynamic regulatory assemblies that fine-tune cellular homeostasis. Recently discovered, PII-like proteins are emerging families of signaling proteins that, while related to canonical PII proteins, have evolved to fulfill a diverse range of cellular functions, many of which remain elusive. In this review, we focus on the evolution of PII-like proteins and summarize the molecular mechanisms governing the assembly dynamics of PII complexes, with a special emphasis on the PII-like protein SbtB.

2.
Science ; 383(6689): eadk5466, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513029

RESUMEN

In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution's ability to recurrently use the same genetic "toolkit" to accomplish similar tasks.


Asunto(s)
Algas Comestibles , Proteínas HMGB , Laminaria , Phaeophyceae , Cromosomas Sexuales , Procesos de Determinación del Sexo , Animales , Evolución Biológica , Phaeophyceae/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Cromosoma Y , Proteínas HMGB/genética , Cromosomas de las Plantas/genética , Dominios HMG-Box , Algas Comestibles/genética , Laminaria/genética , Polen/genética
4.
Bioinformatics ; 39(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37725369

RESUMEN

MOTIVATION: The detection of homology through sequence comparison is a typical first step in the study of protein function and evolution. In this work, we explore the applicability of protein language models to this task. RESULTS: We introduce pLM-BLAST, a tool inspired by BLAST, that detects distant homology by comparing single-sequence representations (embeddings) derived from a protein language model, ProtT5. Our benchmarks reveal that pLM-BLAST maintains a level of accuracy on par with HHsearch for both highly similar sequences (with >50% identity) and markedly divergent sequences (with <30% identity), while being significantly faster. Additionally, pLM-BLAST stands out among other embedding-based tools due to its ability to compute local alignments. We show that these local alignments, produced by pLM-BLAST, often connect highly divergent proteins, thereby highlighting its potential to uncover previously undiscovered homologous relationships and improve protein annotation. AVAILABILITY AND IMPLEMENTATION: pLM-BLAST is accessible via the MPI Bioinformatics Toolkit as a web server for searching precomputed databases (https://toolkit.tuebingen.mpg.de/tools/plmblast). It is also available as a standalone tool for building custom databases and performing batch searches (https://github.com/labstructbioinf/pLM-BLAST).


Asunto(s)
Proteínas , Programas Informáticos , Secuencia de Aminoácidos , Alineación de Secuencia , Proteínas/genética , Anotación de Secuencia Molecular
5.
Proc Natl Acad Sci U S A ; 120(16): e2215808120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37043530

RESUMEN

Deinococcus radiodurans is an atypical diderm bacterium with a remarkable ability to tolerate various environmental stresses, due in part to its complex cell envelope encapsulated within a hyperstable surface layer (S-layer). Despite decades of research on this cell envelope, atomic structural details of the S-layer have remained obscure. In this study, we report the electron cryomicroscopy structure of the D. radiodurans S-layer, showing how it is formed by the Hexagonally Packed Intermediate-layer (HPI) protein arranged in a planar hexagonal lattice. The HPI protein forms an array of immunoglobulin-like folds within the S-layer, with each monomer extending into the adjacent hexamer, resulting in a highly interconnected, stable, sheet-like arrangement. Using electron cryotomography and subtomogram averaging from focused ion beam-milled D. radiodurans cells, we have obtained a structure of the cellular S-layer, showing how this HPI S-layer coats native membranes on the surface of cells. Our S-layer structure from the diderm bacterium D. radiodurans shows similarities to immunoglobulin-like domain-containing S-layers from monoderm bacteria and archaea, highlighting common features in cell surface organization across different domains of life, with connotations on the evolution of immunoglobulin-based molecular recognition systems in eukaryotes.


Asunto(s)
Proteínas Bacterianas , Deinococcus , Proteínas Bacterianas/metabolismo , Deinococcus/química , Membrana Celular/metabolismo , Pared Celular/metabolismo , Inmunoglobulinas/metabolismo
6.
PLoS Pathog ; 19(4): e1011177, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37058467

RESUMEN

Chaperone-Usher Pathway (CUP) pili are major adhesins in Gram-negative bacteria, mediating bacterial adherence to biotic and abiotic surfaces. While classical CUP pili have been extensively characterized, little is known about so-called archaic CUP pili, which are phylogenetically widespread and promote biofilm formation by several human pathogens. In this study, we present the electron cryomicroscopy structure of the archaic CupE pilus from the opportunistic human pathogen Pseudomonas aeruginosa. We show that CupE1 subunits within the pilus are arranged in a zigzag architecture, containing an N-terminal donor ß-strand extending from each subunit into the next, where it is anchored by hydrophobic interactions, with comparatively weaker interactions at the rest of the inter-subunit interface. Imaging CupE pili on the surface of P. aeruginosa cells using electron cryotomography shows that CupE pili adopt variable curvatures in response to their environment, which might facilitate their role in promoting cellular attachment. Finally, bioinformatic analysis shows the widespread abundance of cupE genes in isolates of P. aeruginosa and the co-occurrence of cupE with other cup clusters, suggesting interdependence of cup pili in regulating bacterial adherence within biofilms. Taken together, our study provides insights into the architecture of archaic CUP pili, providing a structural basis for understanding their role in promoting cellular adhesion and biofilm formation in P. aeruginosa.


Asunto(s)
Fimbrias Bacterianas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Fimbrias Bacterianas/metabolismo , Biopelículas , Adhesinas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Fimbrias/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(33): e2203156119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943982

RESUMEN

Deinococcus radiodurans is a phylogenetically deep-branching extremophilic bacterium that is remarkably tolerant to numerous environmental stresses, including large doses of ultraviolet (UV) radiation and extreme temperatures. It can even survive in outer space for several years. This endurance of D. radiodurans has been partly ascribed to its atypical cell envelope comprising an inner membrane, a large periplasmic space with a thick peptidoglycan (PG) layer, and an outer membrane (OM) covered by a surface layer (S-layer). Despite intense research, molecular principles governing envelope organization and OM stabilization are unclear in D. radiodurans and related bacteria. Here, we report a electron cryomicroscopy (cryo-EM) structure of the abundant D. radiodurans OM protein SlpA, showing how its C-terminal segment forms homotrimers of 30-stranded ß-barrels in the OM, whereas its N-terminal segment forms long, homotrimeric coiled coils linking the OM to the PG layer via S-layer homology (SLH) domains. Furthermore, using protein structure prediction and sequence-based bioinformatic analysis, we show that SlpA-like putative OM-PG connector proteins are widespread in phylogenetically deep-branching Gram-negative bacteria. Finally, combining our atomic structures with fluorescence and electron microscopy of cell envelopes of wild-type and mutant bacterial strains, we report a model for the cell surface of D. radiodurans. Our results will have important implications for understanding the cell surface organization and hyperstability of D. radiodurans and related bacteria and the evolutionary transition between Gram-negative and Gram-positive bacteria.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas , Pared Celular , Deinococcus , Membrana Externa Bacteriana/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/química , Pared Celular/química , Microscopía por Crioelectrón , Deinococcus/química , Deinococcus/clasificación , Peptidoglicano/química , Filogenia , Dominios Proteicos
8.
Structure ; 30(4): 462-475, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35219399

RESUMEN

Proteins are central to all of the processes of life. For their activity, they almost invariably need to interact with other macromolecules, be they nucleic acids, membranes, glycans, or other proteins. The interaction between proteins is indeed the most common mode of macromolecular interaction underpinning living systems. To understand these systems at a molecular level, it is therefore essential to identify and characterize their constituent protein-protein interactions. Despite an unprecedented growth in our knowledge of complete proteomes across all domains of life, both at the sequence level and increasingly at the structure level, the inherently low accuracy and molecular resolution of many techniques have made the characterization of protein-protein interactions one of the grand challenges of molecular biology. In this review, we survey both computational and experimental techniques for the medium- to high-throughput characterization of protein-protein interactions and discuss the potential of integrative approaches, given recent advances in sequence analysis and structure prediction.


Asunto(s)
Biología Computacional , Proteoma , Sustancias Macromoleculares , Mapeo de Interacción de Proteínas/métodos , Proteoma/metabolismo
9.
Cell Rep ; 37(8): 110052, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818541

RESUMEN

Many prokaryotic cells are covered by an ordered, proteinaceous, sheet-like structure called a surface layer (S-layer). S-layer proteins (SLPs) are usually the highest copy number macromolecules in prokaryotes, playing critical roles in cellular physiology such as blocking predators, scaffolding membranes, and facilitating environmental interactions. Using electron cryomicroscopy of two-dimensional sheets, we report the atomic structure of the S-layer from the archaeal model organism Haloferax volcanii. This S-layer consists of a hexagonal array of tightly interacting immunoglobulin-like domains, which are also found in SLPs across several classes of archaea. Cellular tomography reveal that the S-layer is nearly continuous on the cell surface, completed by pentameric defects in the hexagonal lattice. We further report the atomic structure of the SLP pentamer, which shows markedly different relative arrangements of SLP domains needed to complete the S-layer. Our structural data provide a framework for understanding cell surfaces of archaea at the atomic level.


Asunto(s)
Archaea/ultraestructura , Membrana Celular/ultraestructura , Glicoproteínas de Membrana/ultraestructura , Proteínas Arqueales/metabolismo , Proteínas Arqueales/ultraestructura , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Membrana Celular/metabolismo , Microscopía por Crioelectrón/métodos , Glicoproteínas de Membrana/metabolismo
10.
Acta Crystallogr D Struct Biol ; 77(Pt 9): 1116-1126, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473083

RESUMEN

Biochemical and biophysical experiments are essential for uncovering the three-dimensional structure and biological role of a protein of interest. However, meaningful predictions can frequently also be made using bioinformatics resources that transfer knowledge from a well studied protein to an uncharacterized protein based on their evolutionary relatedness. These predictions are helpful in developing specific hypotheses to guide wet-laboratory experiments. Commonly used bioinformatics resources include methods to identify and predict conserved sequence motifs, protein domains, transmembrane segments, signal sequences, and secondary as well as tertiary structure. Here, several such methods available through the MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de) are described and how their combined use can provide meaningful information on a protein of unknown function is demonstrated. In particular, the identification of homologs of known structure using HHpred, internal repeats using HHrepID, coiled coils using PCOILS and DeepCoil, and transmembrane segments using Quick2D are focused on.


Asunto(s)
Biología Computacional/métodos , Conformación Proteica , Proteínas/química , Programas Informáticos , Modelos Moleculares
11.
Bioinformatics ; 37(24): 4694-4703, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34323935

RESUMEN

MOTIVATION: The proteasome is the main proteolytic machine for targeted protein degradation in archaea and eukaryotes. While some bacteria also possess the proteasome, most of them contain a simpler and more specialized homolog, the heat shock locus V protease. In recent years, three further homologs of the proteasome core subunits have been characterized in prokaryotes: Anbu, BPH and connectase. With the inclusion of these members, the family of proteasome-like proteins now exhibits a range of architectural and functional forms, from the canonical proteasome, a barrel-shaped protease without pronounced intrinsic substrate specificity, to the monomeric connectase, a highly specific protein ligase. RESULTS: We employed systematic sequence searches to show that we have only seen the tip of the iceberg so far and that beyond the hitherto known proteasome homologs lies a wealth of distantly related, uncharacterized homologs. We describe a total of 22 novel proteasome homologs in bacteria and archaea. Using sequence and structure analysis, we analyze their evolutionary history and assess structural differences that may modulate their function. With this initial description, we aim to stimulate the experimental investigation of these novel proteasome-like family members. AVAILABILITY AND IMPLEMENTATION: The protein sequences in this study are searchable in the MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de) with ProtBLAST/PSI-BLAST and with HHpred (database 'proteasome_homologs'). The following data are available at https://data.mendeley.com/datasets/t48yhff7hs/3: (i) sequence alignments for each proteasome-like homolog, (ii) the coordinates for their structural models and (iii) a cluster-map file, which can be navigated interactively in CLANS and gives direct access to all the sequences in this study. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas , Complejo de la Endopetidasa Proteasomal/química , Proteínas/química , Secuencia de Aminoácidos , Bacterias/metabolismo , Evolución Biológica , Archaea/metabolismo
12.
Biochem J ; 478(10): 1885-1890, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34029366

RESUMEN

Proteins are the essential agents of all living systems. Even though they are synthesized as linear chains of amino acids, they must assume specific three-dimensional structures in order to manifest their biological activity. These structures are fully specified in their amino acid sequences - and therefore in the nucleotide sequences of their genes. However, the relationship between sequence and structure, known as the protein folding problem, has remained elusive for half a century, despite sustained efforts. To measure progress on this problem, a series of doubly blind, biennial experiments called CASP (critical assessment of structure prediction) were established in 1994. We were part of the assessment team for the most recent CASP experiment, CASP14, where we witnessed an astonishing breakthrough by DeepMind, the leading artificial intelligence laboratory of Alphabet Inc. The models filed by DeepMind's structure prediction team using the program AlphaFold2 were often essentially indistinguishable from experimental structures, leading to a consensus in the community that the structure prediction problem for single protein chains has been solved. Here, we will review the path to CASP14, outline the method employed by AlphaFold2 to the extent revealed, and discuss the implications of this breakthrough for the life sciences.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/metabolismo , Inteligencia Artificial , Biología Computacional/métodos , Programas Informáticos , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína
13.
FEBS J ; 288(4): 1142-1162, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32599651

RESUMEN

The PII-like protein CutA is annotated as being involved in Cu2+ tolerance, based on analysis of Escherichia coli mutants. However, the precise cellular function of CutA remains unclear. Our bioinformatic analysis reveals that CutA proteins are universally distributed across all domains of life. Based on sequence-based clustering, we chose representative cyanobacterial CutA proteins for physiological, biochemical, and structural characterization and examined their involvement in heavy metal tolerance, by generating CutA mutants in filamentous Nostoc sp. and in unicellular Synechococcus elongatus. However, we were unable to find any involvement of cyanobacterial CutA in metal tolerance under various conditions. This prompted us to re-examine experimentally the role of CutA in protecting E. coli from Cu2+ . Since we found no effect on copper tolerance, we conclude that CutA plays a different role that is not involved in metal protection. We resolved high-resolution CutA structures from Nostoc and S. elongatus. Similarly to their counterpart from E. coli and to canonical PII proteins, cyanobacterial CutA proteins are trimeric in solution and in crystal structure; however, no binding affinity for small signaling molecules or for Cu2+ could be detected. The clefts between the CutA subunits, corresponding to the binding pockets of PII proteins, are formed by conserved aromatic and charged residues, suggesting a conserved binding/signaling function for CutA. In fact, we find binding of organic Bis-Tris/MES molecules in CutA crystal structures, revealing a strong tendency of these pockets to accommodate cargo. This highlights the need to search for the potential physiological ligands and for their signaling functions upon binding to CutA. DATABASES: Structural data are available in Protein Data Bank (PDB) under the accession numbers 6GDU, 6GDV, 6GDW, 6GDX, 6T76, and 6T7E.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Proteínas Bacterianas/química , Metales Pesados/farmacología , Nostoc/química , Synechococcus/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calorimetría/métodos , Cobre/farmacología , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Nostoc/genética , Nostoc/metabolismo , Conformación Proteica , Multimerización de Proteína , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos , Synechococcus/genética , Synechococcus/metabolismo
14.
Trends Microbiol ; 29(5): 405-415, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33121898

RESUMEN

Most prokaryotic cells are encased in a surface layer (S-layer) consisting of a paracrystalline array of repeating lattice-forming proteins. S-layer proteins populate a vast and diverse sequence space, performing disparate functions in prokaryotic cells, including cellular defense, cell-shape maintenance, and regulation of import and export of materials. This article highlights recent advances in the understanding of S-layer structure and assembly, made possible by rapidly evolving structural and cell biology methods. We underscore shared assembly principles revealed by recent work and discuss a common molecular framework that may be used to understand the structural organization of S-layer proteins across bacteria and archaea.


Asunto(s)
Archaea/genética , Bacterias/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Archaea/química , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Bacterias/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Glicoproteínas de Membrana/genética
15.
Curr Protoc Bioinformatics ; 72(1): e108, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315308

RESUMEN

The MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de) provides interactive access to a wide range of the best-performing bioinformatics tools and databases, including the state-of-the-art protein sequence comparison methods HHblits and HHpred. The Toolkit currently includes 35 external and in-house tools, covering functionalities such as sequence similarity searching, prediction of sequence features, and sequence classification. Due to this breadth of functionality, the tight interconnection of its constituent tools, and its ease of use, the Toolkit has become an important resource for biomedical research and for teaching protein sequence analysis to students in the life sciences. In this article, we provide detailed information on utilizing the three most widely accessed tools within the Toolkit: HHpred for the detection of homologs, HHpred in conjunction with MODELLER for structure prediction and homology modeling, and CLANS for the visualization of relationships in large sequence datasets. © 2020 The Authors. Basic Protocol 1: Sequence similarity searching using HHpred Alternate Protocol: Pairwise sequence comparison using HHpred Support Protocol: Building a custom multiple sequence alignment using PSI-BLAST and forwarding it as input to HHpred Basic Protocol 2: Calculation of homology models using HHpred and MODELLER Basic Protocol 3: Cluster analysis using CLANS.


Asunto(s)
Biología Computacional , Análisis de Secuencia de Proteína , Programas Informáticos , Conformación Proteica , Alineación de Secuencia , Análisis de Secuencia de Proteína/métodos , Interfaz Usuario-Computador
16.
BMC Evol Biol ; 20(1): 162, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33297953

RESUMEN

BACKGROUND: The huntingtin-associated protein 40 (HAP40) abundantly interacts with huntingtin (HTT), the protein that is altered in Huntington's disease (HD). Therefore, we analysed the evolution of HAP40 and its interaction with HTT. RESULTS: We found that in amniotes HAP40 is encoded by a single-exon gene, whereas in all other organisms it is expressed from multi-exon genes. HAP40 co-occurs with HTT in unikonts, including filastereans such as Capsaspora owczarzaki and the amoebozoan Dictyostelium discoideum, but both proteins are absent from fungi. Outside unikonts, a few species, such as the free-living amoeboflagellate Naegleria gruberi, contain putative HTT and HAP40 orthologs. Biochemically we show that the interaction between HTT and HAP40 extends to fish, and bioinformatic analyses provide evidence for evolutionary conservation of this interaction. The closest homologue of HAP40 in current protein databases is the family of soluble N-ethylmaleimide-sensitive factor attachment proteins (SNAPs). CONCLUSION: Our results indicate that the transition from a multi-exon to a single-exon gene appears to have taken place by retroposition during the divergence of amphibians and amniotes, followed by the loss of the parental multi-exon gene. Furthermore, it appears that the two proteins probably originated at the root of eukaryotes. Conservation of the interaction between HAP40 and HTT and their likely coevolution strongly indicate functional importance of this interaction.


Asunto(s)
Dictyostelium , Eucariontes , Proteína Huntingtina , Enfermedad de Huntington , Proteínas Nucleares , Animales , Eucariontes/clasificación , Eucariontes/genética , Evolución Molecular , Proteína Huntingtina/genética , Proteínas Nucleares/genética
17.
Proc Natl Acad Sci U S A ; 117(9): 4701-4709, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32079721

RESUMEN

Proteins' interactions with ancient ligands may reveal how molecular recognition emerged and evolved. We explore how proteins recognize adenine: a planar rigid fragment found in the most common and ancient ligands. We have developed a computational pipeline that extracts protein-adenine complexes from the Protein Data Bank, structurally superimposes their adenine fragments, and detects the hydrogen bonds mediating the interaction. Our analysis extends the known motifs of protein-adenine interactions in the Watson-Crick edge of adenine and shows that all of adenine's edges may contribute to molecular recognition. We further show that, on the proteins' side, binding is often mediated by specific amino acid segments ("themes") that recur across different proteins, such that different proteins use the same themes when binding the same adenine-containing ligands. We identify numerous proteins that feature these themes and are thus likely to bind adenine-containing ligands. Our analysis suggests that adenine binding has emerged multiple times in evolution.


Asunto(s)
Adenina/metabolismo , Evolución Molecular , Simulación del Acoplamiento Molecular/métodos , Conformación Proteica , Adenina/química , Sitios de Unión , Enlace de Hidrógeno , Unión Proteica , Análisis de Secuencia de Proteína/métodos , Programas Informáticos
18.
Elife ; 82019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31718772

RESUMEN

Intracellular trafficking depends on the function of Rab GTPases, whose activation is regulated by guanine exchange factors (GEFs). The Rab5 GEF, Rabex5, was previously proposed to be auto-inhibited by its C-terminus. Here, we studied full-length Rabex5 and Rabaptin5 proteins as well as domain deletion Rabex5 mutants using hydrogen deuterium exchange mass spectrometry. We generated a structural model of Rabex5, using chemical cross-linking mass spectrometry and integrative modeling techniques. By correlating structural changes with nucleotide exchange activity for each construct, we uncovered new auto-regulatory roles for the ubiquitin binding domains and the Linker connecting those domains to the catalytic core of Rabex5. We further provide evidence that enhanced dynamics in the catalytic core are linked to catalysis. Our results suggest a more complex auto-regulation mechanism than previously thought and imply that ubiquitin binding serves not only to position Rabex5 but to also control its Rab5 GEF activity through allosteric structural alterations.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Ubiquitina/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Dominio Catalítico , Línea Celular , Humanos , Unión Proteica , Transporte de Proteínas
19.
Elife ; 82019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31613220

RESUMEN

ß-Propellers arise through the amplification of a supersecondary structure element called a blade. This process produces toroids of between four and twelve repeats, which are almost always arranged sequentially in a single polypeptide chain. We found that new propellers evolve continuously by amplification from single blades. We therefore investigated whether such nascent propellers can fold as homo-oligomers before they have been fully amplified within a single chain. One- to six-bladed building blocks derived from two seven-bladed WD40 propellers yielded stable homo-oligomers with six to nine blades, depending on the size of the building block. High-resolution structures for tetramers of two blades, trimers of three blades, and dimers of four and five blades, respectively, show structurally diverse propellers and include a novel fold, highlighting the inherent flexibility of the WD40 blade. Our data support the hypothesis that subdomain-sized fragments can provide structural versatility in the evolution of new proteins.


Asunto(s)
Actinobacteria/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Conformación Proteica , Multimerización de Proteína
20.
EMBO Rep ; 20(8): e47182, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286648

RESUMEN

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Proteínas de la Membrana/genética , Plasmodesmos/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Glicosiltransferasas/deficiencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/deficiencia , Fosfolípidos/metabolismo , Células Vegetales , Plantas Modificadas Genéticamente , Plasmodesmos/metabolismo , Plasmodesmos/ultraestructura , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...