Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 45(8): 2152-2155, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287179

RESUMEN

We experimentally conduct Brillouin dynamic grating (BDG) operation using a 1-km-long four-mode fiber. By employing a simplified ring-cavity configuration with single-end pumping, the BDG is effectively generated in $ {{\rm LP}_{01}} $LP01 mode within a range of 250 m, and three higher-order modes, namely, $ {{\rm LP}_{11b}} $LP11b, $ {{\rm LP}_{21a}} $LP21a, and $ {{\rm LP}_{02}} $LP02, are chosen as probes to analyze the BDG with a spatial resolution of 1 m. To the best of our knowledge, this is the first time to characterize the responses of BDG frequency to temperature and strain for different modes in a conventional few-mode fiber. By employing the pump-probe pair of $ {{\rm LP}_{01}}{{\rm - LP}_{02}} $LP01-LP02 mode, the highest temperature and strain sensitivities of 3.21 MHz/°C and $ - 0.0384\;{\rm MHz}/{\unicode{x00B5}}{\unicode{x03B5}} $-0.0384MHz/µÎµ have been achieved. Also, the performance of simultaneously distributed temperature and strain sensing based on BDG is evaluated.

2.
Opt Lett ; 45(8): 2323-2326, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287224

RESUMEN

Mode-selective fiber lasers have advantages in a number of applications. Here we propose and experimentally demonstrate a transverse mode-selective few-mode Brillouin fiber laser using the mode-selective photonic lantern. We generated the lowest three orders of linearly polarized (LP) modes based on both intramodal and intermodal stimulated Brillouin scattering (SBS). Their slope efficiencies, optical spectra, mode profiles, and linewidths were measured.

3.
Opt Express ; 27(24): 35962-35970, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31878760

RESUMEN

Few-mode EDFAs with low channel crosstalk can replace multiple parallel single-mode EDFAs in single-mode fiber trunk lines and networks. Here we proposed a low-crosstalk few-mode EDFA by exploiting the unitary property of the coupling matrix of a symmetric photonic lantern. We experimentally demonstrated a 3-channel few-mode EDFA using retro-reflection of a 3-mode symmetric photonic lantern. The small signal gain for all three channels are measured to be larger than 25 dB over the entire C-band and the crosstalks are below -10 dB.

4.
Sci Rep ; 9(1): 9015, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227733

RESUMEN

Quantum entanglement is arguably the cornerstone which differentiates the quantum realm from its classical counterpart. While entanglement can reside in any photonic degree of freedom, polarization permits perhaps the most straightforward manipulation due to the widespread availability of standard optical elements such as waveplates and polarizers. As a step towards a fuller exploitation of entanglement in other degrees of freedom, in this work we demonstrate control over the transverse spatial structure of light at the single-photon level. In particular we integrate in our setup all the technologies required for: (i) fibre-based photon pair generation, (ii) deterministic and broadband single-photon spatial conversion relying on a passive optical device, and (iii) single-photon transmission, while retaining transverse structure, over 400 m of few-mode fibre. In our experiment, we employ a mode selective photonic lantern multiplexer with the help of which we can convert the transverse profile of a single photon from the fundamental mode into any of the supported higher-order modes. We also achieve conversion to an incoherent or coherent addition of two user-selected higher order modes by addressing different combinations of inputs in the photonic lantern multiplexer. The coherent nature of the addition, and extraction of usable orbital angular momentum at the single-photon level, is further demonstrated by far-field diffraction through a triangular aperture. Our work could enable studies of photonic entanglement in the transverse modes of a fibre and could constitute a key resource quantum for key distribution with an alphabet of scalable dimension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA