Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(5): 481, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683240

RESUMEN

The continuous expansion of the global vehicle fleet poses a growing threat to environmental quality through heavy metal contamination. In this scenario, monitoring to safeguard public health in urban areas is necessary. Our study involved the collection of 36 street dust and 29 moss samples from roads of a Brazilian metropolis (Recife) with varying traffic intensities as follows: natural reserve (0 vehicles per day), low (< 15,000 vehicles per day), medium (15,000-30,000 vehicles per day), and high (> 30,000 vehicles per day). ICP-AES analysis was performed to determine the concentrations of nine potentially toxic metals (Ba, Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn) to assess the influence of vehicular flow on urban contamination. In the street dust samples, the mean metal concentrations (mg kg-1) exhibited the following order: Ba (503.7) > Mn (303.0) > Zn (144.4) > Cu (95.3) > Cr (56.1) > Pb (34.2) > V (28.7) > Ni (11.3) > Cd (1.5). Conversely, in the moss samples, the metal concentration order was as follows (mg kg-1): Mn (63.8) > Zn (62.5) > Ba (61.0) > Cu (17.7) > Cr (8.0) > V (7.3) > Pb (7.0) > Ni (2.9) > Cd (0.3). Roads with higher traffic volumes exhibited the highest metal enrichments in moss samples for all metals and in dust samples for Cd, Cr, Mn, Ni, and V. However, dust from low-flow roads had higher enrichments for Ba, Cu, and Zn, indicating the influential role of other traffic-related factors in metal deposition. Our findings highlight traffic flow as the predominant source of pollution in urban centers, with both street dust and moss serving as sensitive indicators of metal input attributable to vehicular traffic. These indicators offer valuable insights for urban quality monitoring and pollution control efforts.


Asunto(s)
Ciudades , Polvo , Monitoreo del Ambiente , Metales Pesados , Metales Pesados/análisis , Brasil , Monitoreo del Ambiente/métodos , Polvo/análisis , Contaminantes Ambientales/análisis , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis
2.
Ecotoxicol Environ Saf ; 183: 109469, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31376803

RESUMEN

Botafogo river estuary poses the highest Hg concentration reported for mangrove soils in Brazil. Such high contamination took place owing to the improper waste disposal for 24 years from a chlor-alkali plant nearby the estuary. Here we determined Hg concentrations in soils, mangrove plants (Rhizophora mangle and Laguncularia racemosa), and an aquatic organism (the oyster species Crassostrea rhizophorae) to assess Hg bioavailability. Besides, a sequential extraction procedure was used to separate soil Hg into five fractions: water-soluble; 'human stomach acid' soluble; organically bound; elemental Hg; mercuric sulfide. Results showed that environmentally available concentration of Hg in the mangrove soils were up to 150-fold higher than a pristine mangrove under the same geological context used as a reference. Additionally, Hg concentration in soils was also above sediment quality guidelines and Hg adverse effects towards sensitive estuarine organisms are likely. Mercury concentrations in oysters were the highest reported in Brazil, but within safety standards according to the country food security agency. It seems that Hg stocks in the studied soils are governed by organic matter and redox conditions, but changing on environmental conditions and land use can alter this balance and convert these mangrove areas from sink to source of Hg to the environment.


Asunto(s)
Organismos Acuáticos/química , Monitoreo del Ambiente/métodos , Mercurio/análisis , Contaminantes del Suelo/análisis , Humedales , Animales , Organismos Acuáticos/efectos de los fármacos , Disponibilidad Biológica , Brasil , Industria Química , Estuarios , Humanos , Ostreidae/química , Ostreidae/efectos de los fármacos , Rhizophoraceae/química , Rhizophoraceae/efectos de los fármacos , Ríos/química , Suelo/química
3.
Environ Monit Assess ; 189(1): 28, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28000124

RESUMEN

Epiphytic lichens, collected from 119 sampling sites grown over "Roistonea Royal Palm" trees, were used to assess the spatial distribution pattern of lead (Pb) and identify possible pollution sources in Havana (Cuba). Lead concentrations in lichens and topsoils were determined by flame atomic absorption spectrophotometry and inductively coupled plasma (ICP) atomic emission spectrometry, respectively, while Pb in crude oils and gasoline samples were measured by ICP-time of flight mass spectrometry (ICP-ToF-MS). Lead isotopic ratios measurements for lichens, soils, and crude oils were obtained by ICP-ToF-MS. We found that enrichment factors (EF) reflected a moderate contamination for 71% of the samples (EF > 10). The 206Pb/207Pb ratio values for lichens ranged from 1.17 to 1.20 and were a mixture of natural radiogenic and industrial activities (e.g., crude oils and fire plants). The low concentration of Pb found in gasoline (<7.0 µg L-1) confirms the official statement that leaded gasoline is no longer used in Cuba.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Plomo/análisis , Líquenes/química , Cuba , Gasolina/análisis , Isótopos/análisis , Suelo/química , Espectrofotometría Atómica/métodos , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...