Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 670: 550-562, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38776690

RESUMEN

HYPOTHESIS: Superhydrophobic surfaces can effectively prevent the freezing of supercooled droplets in technological systems. Droplets on superhydrophobic surfaces commonly not only wet the top asperities (Cassie State), but also partially penetrate into microstructure due to surface properties, environment, and droplet impact occurring in real-world applications. Implications on ice nucleation can be expected and are little explored. It remains elusive how anti-icing surfaces can be designed to exploit intermediate wetting phenomena. EXPERIMENTS: We utilized engineered micro-/nanostructures, specifically micropillars, to modulate the wetting fraction in the microstructure. The behavior of intermediate wetting with supercooling and resulting implications on ice nucleation delay when potential nucleation sites are formed in the microcavities were investigated using experimental, theoretical, and simulation components. FINDINGS: The temperature-dependent wetting fraction in the microstructure increased at supercooled temperatures, partly activated by condensation in the microcavities. At -10/-20 °C, a critical wetting fraction led to maximum ice nucleation delays, with experimental results consistent with theoretical predictions. This critical wetting fraction minimized the effective contact area solid-to-liquid along the partially wetted microstructure. The study establishes physical relations between ice nucleation delays, geometrical surface parameters and wettability properties in the intermediate wetting regime, providing guidance for the design of ice resistant microstructured surfaces.

2.
Langmuir ; 40(17): 8836-8842, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38634602

RESUMEN

Halide perovskite thin films can be the centerpiece of high-performance solar cells, light-emitting diodes, and other optoelectronic devices if the films are of high uniformity and relatively free of pinholes and other defects. A common strategy to form dense films from solution has been to generate a high density of nuclei by rapidly increasing supersaturation, for example, by timely application of an antisolvent or forced convection. In this work, we examine the role of retrograde solubility, wherein solubility decreases with increasing temperature, as a means of increasing the nucleation density and film coverage of slot-die-coated methylammonium lead iodide (MAPbI3) from γ-butyrolactone (GBL) solution. Coverage was investigated as a function of the substrate temperature and the presence and temperature of an air knife. Results were considered within the framework of the dimensionless modified Biot number, which quantifies the interplay between evaporation and horizontal diffusion. Moderate temperatures and a heated air knife improved film coverage and morphology by enhanced nucleation up to ∼80 °C. However, despite the dense nucleation enabled by retrograde solubility, slow evaporation as a result of the low vapor pressure of GBL, combined with Ostwald ripening at high temperatures, prevented the deposition of void-free, device-quality films. This work has provided a more detailed understanding of the interplay between perovskite processing, solvent parameters, and film morphology and ultimately indicates the obstacles to forming dense, uniform films from solvents with high boiling points even in the presence of rapid nucleation.

3.
Soft Matter ; 19(48): 9496-9504, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38037425

RESUMEN

Differential scanning calorimetry (DSC) was used to study the fast aging behavior of two petroleum pitch materials despite being only three to five years old. We observe that these highly aromatic pitches with broad distributions of both molecular weight and aromaticity exhibit large enthalpic relaxation endotherms in initial DSC heating scans, and 20-32 °C reductions in the fictive temperature and 0.35-0.87 of θK, which are indicative of aged glasses similar to ultrastable glasses and 20 MA aged amber. Quantifying the degree of thermodynamic stability relative to the Kauzmann temperature vs. the aging time demonstrates that these materials age just as quickly as low fragility metallic glasses. Additionally, we observe that pitches age faster than polymers reported in the literature when compared using down-jump experiments. We hypothesize that the fraction of higher aromaticity of pitch molecules plays a crucial role in faster dynamics. The unique aging behavior and the ability to produce pitches in bulk quantities using pilot-scale equipment, while being possible to tailor their molecular composition, make them a useful material for studying complex aging dynamics in the deep glassy state.

4.
Langmuir ; 39(46): 16231-16243, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37939230

RESUMEN

The microstructure of solid coatings produced by solution processing is highly dependent on the coupling between growth, solute diffusion, and solvent evaporation. Here, a quasi-2D numerical model coupling drying and solidification is used to predict the transient lateral growth of two adjacent nuclei growing toward each other. Lateral gradients of the solute and solvent influence the evolution of film thickness and solid growth rate. The important process parameters and solvent properties are captured by the dimensionless Peclet number (Pe) and the Biot number (Bi), modified by an aspect ratio defined by the film thickness and distance between nuclei. By variation of Pe and Bi, the evaporation dynamics and aspect ratio are shown to largely determine the coating quality. These findings are applied to drying thin films of crystallizing halide perovskites, demonstrating a convenient process map for capturing the relationship between the modified Bi and well-defined coating regimes, which may be generalized for any solution-processed thin film coating systems.

5.
Polymers (Basel) ; 15(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37688126

RESUMEN

Thermosetting polymers tend to have a stiffness-toughness trade-off due to the opposing relationship of stiffness and toughness on crosslink density. We hypothesize that engineering the polymer network, e.g., by incorporating urethane oligomers, we can improve the toughness by introducing variations in crosslink density. In this work, we show that a brittle methacrylated Bis-GMA resin (known as DA2) is toughened by adding a commercial urethane acrylate resin (known as Tenacious) in different proportions. The formulations are 3D printed using a vat photopolymerization technique, and their mechanical, thermal, and fracture properties are investigated. Our results show that a significant amount of Tenacious 60% w/w is required to produce parts with improved toughness. However, mechanical properties drop when the Tenacious amount is higher than 60% w/w. Overall, our results show that optimizing the amount of urethane acrylate can improve toughness without significantly sacrificing mechanical properties. In fact, the results show that synergistic effects in modulus and strength exist at specific blend concentrations.

6.
Polymers (Basel) ; 15(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37571083

RESUMEN

Standard lay-up fabrication of fiber-reinforced composites (FRCs) suffer from poor out-of-plane properties and delamination resistance. While advanced manufacturing techniques (e.g., interleaving, braiding, and z-pinning) increase delamination resistance in FRCs, they typically result in significant fabrication complexity and limitations, increased manufacturing costs, and/or overall stiffness reduction. In this work, we demonstrate the use of facile digital light processing (DLP) technique to additively manufacture (AM) random glass FRCs with engineered interleaves. This work demonstrates how vat photo-polymerization techniques can be used to build composites layer-by-layer with controlled interleaf material, thickness, and placement. Note that this engineering control is almost impossible to achieve with traditional manufacturing techniques. A range of specimens were printed to measure the effect of interleaf thickness and material on tensile/flexural properties as well as fracture toughness. One important observation was the ≈60% increase in interlaminar fracture toughness achieved by using a tough resin material in the interleaf. The comparison between AM and traditionally manufactured specimens via vacuum-assisted resin transfer molding (VARTM) highlighted the limitation of AM techniques in achieving high mat consolidation. In other words, the volume fraction of AM parts is limited by the wet fiber mat process, and engineering solutions are discussed. Overall, this technique offers engineering control of FRC design and fabrication that is not available with traditional methods.

7.
Langmuir ; 39(30): 10495-10503, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37470441

RESUMEN

The spreading of liquid filaments on solid surfaces is of paramount importance to a wide range of applications including ink-jet printing, coating, and direct ink writing (DIW). However, there is a considerable lack of experimental, numerical, and theoretical studies on the spreading of filaments on solid substrates. In this work, we studied the dynamics of spreading of Newtonian filaments via experiment, numerical simulations, and theoretical analysis. More specifically, we used a novel experimental setup to validate a 2D moving mesh computational fluid dynamics (CFD) model. The CFD model is used to determine the effect of processing and fluid parameters on the dynamics of filament spreading. We experimentally showed that for a Newtonian filament, the same spreading dynamics and final shape are obtained when the initial radius is constant, independent of the magnitude in printing parameters. In other words, the only important parameter on the spreading of filaments is the initial filament radius. Using a numerical model, we showed that the initial filament radius manifests itself in two important dimensionless parameters, Bond number, Bo, and viscous timescale, τµ. Furthermore, the results clearly show that the dynamics of spreading are governed by the static advancing contact angle, θs. These three parameters determine a master spreading curve that can be used to predict the spreading of cylindrical filaments on flat substrates. Finally, we developed a theoretical model that was parameterized using experimental data to correlate the steady-state shape of filaments with Bo and θs. These results are particularly applicable for predicting and controlling the dynamics of filaments in DIW and other extrusion-based processes.

8.
J Colloid Interface Sci ; 636: 677-688, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36680958

RESUMEN

HYPOTHESIS: There exists a generalized solution for the spontaneous spreading dynamics of droplets taking into account the influence of interfacial tension and gravity. EXPERIMENTS: This work presents a generalized scaling theory for the problem of spontaneous dynamic spreading of Newtonian fluids on a flat substrate using experimental analysis and numerical simulations. More specifically, we first validate and modify a dynamic contact angle model to accurately describe the dependency of contact angle on the contact line velocity, which is generalized by the capillary number. The dynamic contact model is implemented into a two-phase moving mesh computational fluid dynamics (CFD) model, which is validated using experimental results. FINDINGS: We show that the spreading process is governed by three important parameters: the Bo number, viscous timescale τviscous, and static advancing contact angle, θs. More specifically, there exists a master spreading curve for a specific Bo and θs by scaling the spreading time with the τviscous. Moreover, we developed a correlation for prediction of the equilibrium shape of the droplets as a function of both Bo and θs. The results of this study can be used in a wide range of applications to predict both dynamic and equilibrium shape of droplets, such as in droplet-based additive manufacturing.

9.
Soft Matter ; 19(3): 394-409, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36454226

RESUMEN

Low molecular weight gelators (LMWGs) are the subject of intense research for a range of biomedical and engineering applications. Peptides are a special class of LMWG, which offer infinite sequence possibilities and, therefore, engineered properties. This work examines the propensity of the GxG peptide family, where x denotes a guest residue, to self-assemble into fibril networks via changes in pH and ethanol concentration. These triggers for gelation are motivated by recent work on GHG and GAG, which unexpectedly self-assemble into centimeter long fibril networks with unique rheological properties. The propensity of GxG peptides to self-assemble, and the physical and chemical properties of the self-assembled structures are characterized by microscopy, spectroscopy, rheology, and X-ray diffraction. Interestingly, we show that the number, length, size, and morphology of the crystalline self-assembled aggregates depend significantly on the x-residue chemistry and the solution conditions, i.e. pH, temperature, peptide concentration, etc. The different x-residues allow us to probe the importance of different peptide interactions, e.g. π-π stacking, hydrogen bonding, and hydrophobicity, on the formation of fibrils. We conclude that fibril formation requires π-π stacking interactions in pure water, while hydrogen bonding can form fibrils in the presence of ethanol-water solutions. These results validate and support theoretical arguments on the propensity for self-assembly and leads to a better understanding of the relationship between peptide chemistry and fibril self-assembly. Overall, GxG peptides constitute a unique family of peptides, whose characterization will aid in advancing our understanding of self-assembly driving forces for fibril formation in peptide systems.


Asunto(s)
Glicina , Péptidos , Péptidos/química , Microscopía , Agua/química , Etanol
10.
Soft Matter ; 17(39): 8925-8936, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34546280

RESUMEN

Pitch-based carbon fibers are of considerable interest as high-performance materials. There are reports over the last several decades detailing (i) methods of improving pitch-based carbon fiber performance, and (ii) reducing the cost of production via novel processing techniques. However, there remain considerable challenges in producing high-performance pitch-based carbon fibers consistently on an industrial scale. This is arguably due to the difficulty of scaling the melt-spinning process to compensate for variability in pitch feedstock quality and a lack of understanding of processing-structure-performance relationships. This work focuses on the early stages of heat treatment (pyrolysis) of isotropic pitch and its effect on the chemical, thermal, and rheological properties of the pitch, which help determine its processability. More specifically, we quantify significant changes in chemical structure, Mw, Tg, Ts, and shear and extensional rheology as a function of pyrolysis time at 400 °C. The extensional rheology, in particular, shows that the 'stretchability' of the pitch samples strongly depends on pyrolysis severity, and is important for characterizing 'drawability'. Using a novel analysis of the uniaxial stretching kinematics, we show an isothermal 'drawability window' that allows for the largest axial and radial Hencky strains at constant rate. We hypothesize that this extensional drawability window could facilitate the successful processing of pitch into high quality fiber, minimizing the trial-and-error approach currently used in the field.

11.
J Phys Chem B ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34133176

RESUMEN

This Perspective outlines our current understanding of molecular gels composed of short and ultrashort peptides over the past 20 years. We discuss in detail the state of the art regarding self-assembly mechanisms, structure, thermal stability, and kinetics of fibril and/or network formation. Emphasis is put on the importance of the combined use of spectroscopy and rheology for characterizing and validating self-assembly models. While a range of peptide chemistries are reviewed, we focus our discussion on a unique new class of ultrashort peptide gelators, denoted GxG peptides (x: guest residue), which are capable of forming self-assembled fibril networks. The storage moduli of GxG gels are tunable up to 100 kPa depending on concentration, pH, and/or cosolvent. The sheet structures of the fibrils differ from canonical ß-sheets. When appropriate, each section highlights opportunities for additional research and technologies that would further our understanding.

12.
Langmuir ; 37(23): 6935-6946, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34077210

RESUMEN

Upon deprotonation of its imidazole group at ∼pH 6, the unblocked tripeptide glycylhistidylglycine (GHG) self-assembles into very long crystalline fibrils on a 10-1000 µm scale which are capable of forming a volume spanning network, that is, hydrogel. The critical peptide concentration for self-assembly at a pH of 6 lies between 50 and 60 mM. The fraction of peptides that self-assemble into fibrils depends on the concentration of deprotonated GHG. While IR spectra seem to indicate the formation of fibrils with standard amyloid fibril ß-sheet structures, vibrational circular dichroism spectra show a strongly enhanced amide I' signal, suggesting that the formed fibrils exhibit significant chirality. The fibril chirality appears to be a function of peptide concentration. Rheological measurements reveal that the rate of gelation is concentration-dependent and that there is an optimum gel strength at intermediate peptide concentrations of ca. 175 mM. This paper outlines the unique properties of the GHG gel phase which is underlain by a surprisingly dense fibril network with an exceptionally strong modulus that make them potential additives for biomedical applications.

13.
J Colloid Interface Sci ; 594: 681-689, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33780771

RESUMEN

HYPOTHESIS: Understanding interfacial phenomena at elevated pressure is crucial to the design of a variety of processes, modeling important systems, and interpreting interfacial thermodynamics. While many previous studies have offered insight into these areas, current techniques have inherent drawbacks that limit equilibrium measurements. EXPERIMENTS: In this work, we adapt the ambient microtensiometer of Alvarez and co-workers into a high pressure microtensiometer (HPMT) capable of experimentally quantifying a wide range of interfacial phenomena at elevated pressures. Particularly, the HPMT uses a microscale spherical interface pinned to the tip of a capillary to directly measure surface tension via the Laplace equation. The stream of microscale bubbles used to pressurize the system ensures quick saturation of the bulk phases prior to conducting measurements. The HPMT is validated by measuring the surface tension of air-water as a function of pressure. We then measure the surface tension of CO2 vapor and water as a function of pressure, finding lower equilibrium surface tension values than originally reported in the literature. FINDINGS: This work both introduces further development of a useful experimental technique for probing interfacial phenomena at elevated pressures and demonstrates the importance of establishing bulk equilibrium to measure surface tension. The true equilibrium state of the CO2-water surface has a lower tension than previously reported. We hypothesize that this discrepancy is likely due to the long diffusion timescales required to ensure saturation of the bulk fluids using traditional tensiometry. Thus we argue that previously reported elevated pressure measurements were performed at non-equilibrium conditions, putting to rest a long standing discrepancy in the literature. Our measurements establish an equilibrium pressure isotherm for the pure CO2-water surface that will be essential in analyzing surfactant transport at elevated pressures.

14.
J Pept Sci ; 27(5): e3305, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33619869

RESUMEN

This work revisits several open questions regarding the mechanisms of GAG fibril formation and structure as a function of temperature. The authors recently hypothesized that there is a solubility limit of GAG in ethanol/water that induces self-assembly. In other words, not all peptides can participate in fibrillization and some fraction is still soluble in solution. We show via FTIR spectroscopy that, indeed, free peptides are still present in solution after fibril formation, strongly supporting the solubility model. Furthermore, previous work showed GAG self-assembled into right-handed (phase I) or left-handed (phase II) chiral structures depending on temperature. In this study, we analyze the crystalline structure of phase I and II gels via WAXS and SAXS to compare their crystalline structures and order. Rheological measurements were used to investigate the response of the fibrillar network to temperature. They reveal that the ability of the peptide to self-assemble depends on the solubility at a given temperature and not on thermal history. Furthermore, the gel softening point, the linear viscoelastic gel microstructure, and relaxation spectrum are very similar between phase I and phase II. Overall, the temperature only affects the chirality of the fibrils and the formation kinetics.


Asunto(s)
Etanol/química , Glicina/química , Temperatura , Agua/química , Geles/química , Glicina/análogos & derivados , Estructura Molecular , Tamaño de la Partícula
15.
Materials (Basel) ; 13(18)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32947908

RESUMEN

A well-defined resin system is needed to serve as a benchmark for 3D printing of high-performance composites. This work describes the design and characterization of such a system that takes into account processability and performance considerations. The Grunberg-Nissan model for resin viscosity and the Fox equation for polymer Tg were used to determine proper monomer ratios. The target viscosity of the resin was below 500 cP, and the target final Tg of the cured polymer was 150 °C based on tan-δ peak from dynamic mechanical analysis. A tri-component model resin system, termed DA-2 resin, was determined and fully characterized. The printed polymer post-cure exhibited good thermal properties and high mechanical strength, but has a comparatively low fracture toughness. The model resin will be used in additive manufacturing of fiber reinforced composite materials as well as for understanding the fundamental processing-property relationships in light-based 3D printing.

16.
J Cardiothorac Surg ; 15(1): 58, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295636

RESUMEN

BACKGROUND: Malignant pleural effusions are a serious complication of many late stage cancers that adversely affect quality of life. Pleurodesis with talc slurry is a standard treatment option, but clinical failures occur, possible due to poor talc delivery. A novel drug-delivery system was developed that fills the entire thoracic cavity with a liquid foam containing talc. The foam is designed to gel and adhere to the tissue walls at body temperature, to improve talc deposition and efficacy. METHODS: Rheology, foam stability, and ex-vivo coating and bio-adhesion studies were performed on three concentrations of a novel hydrogel talc foam system that was developed to improve delivery of talc to the pleural surfaces. A New Zealand rabbit model of pleurodesis was used to evaluate effectiveness of the foams at inducing adhesion formation and compared to talc slurry. The rabbits were recovered after they had one of the test agents instilled into their pleura, and then sacrificed after 28 days. Pleurodesis was assessed by a blinded pathologist using a standardized pathological scoring system. RESULTS: All talc foam formulations produced foams that gelled at physiological temperatures and were relatively stable for at least two hours. As the concentration of the formulation increased the gelation temperature decreased and the foam adhesiveness increased. Rabbits that received talc foam had significantly greater adhesion formation than talc slurry (mean score of 2.21 vs. 1.18 (p < 0.05)). Rabbits that received the 20% foam developed the most adhesions. CONCLUSIONS: This study demonstrates that our triblock copolymer hydrogel foam delivery system enhances adhesion formation in an experimental model. This novel approach can have important clinical impact, potentially improving efficacy of existing therapies and reducing the need for more invasive treatments.


Asunto(s)
Hidrogeles , Derrame Pleural Maligno/tratamiento farmacológico , Pleurodesia/métodos , Talco/administración & dosificación , Animales , Sistemas de Liberación de Medicamentos , Masculino , Conejos , Talco/uso terapéutico , Adherencias Tisulares/inducido químicamente
17.
J Colloid Interface Sci ; 573: 123-134, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32278171

RESUMEN

HYPOTHESIS: Recently, we reported a three-dimensional phase diagram for the gelation of cationic tripeptide glycylalanylglycine (GAG) in water-ethanol mixtures. We showed that the gel strength reaches an optimum for a peptide concentration of 200 mM and ethanol/water mixtures with ca. 55-60 mol% ethanol. An increase of the ethanol fraction causes a substantial upshift of the gel's softening temperature which is indicative of a reduced peptide solubility. We expect the formation of long crystalline fibrils which form the sample spanning network of the gel phase to precede the gelation process and that the fibril microstructure depends on the rate and concentration of peptide. EXPERIMENTS: We used UV circular dichroism (UVCD) spectroscopy to probe the kinetics of GAG fibril formation as a function of peptide concentration and ethanol fraction. We provide experimental evidence for the notion that the utilized CD signal reflects the three-dimensional assembly of peptides rather than a two-dimensional sheet structure. UVCD was also used to probe the melting of GAG fibrils with increasing temperature. FTIR and vibrational circular dichroism (VCD) spectroscopy were employed to characterize the structure of sheets with which the observed fibrils were formed. FINDINGS: Fibrilization and gelation kinetics occur on a very similar time scale for very short gelation times (<7 min) observed at high peptide concentrations and/or ethanol fractions. Otherwise, gelation proceeds significantly slower than fibrilization. The trends in the UVCD spectral response parallel the trends in the storage modulus as a function of peptide concentration and ethanol fraction. IR and VCD profiles of amide I' reveal that fibril structure and the respective chirality are both affected by peptide concentration and solvent composition. At high ethanol fractions, the VCD changes its sign suggesting a conversion from phase II to phase I. Generally, the latter is obtained only at temperatures below 15 °C. Altogether, our results reveal how GAG fibrilization and gelation are interrelated and how the gel properties can be tuned by changing the composition of the ternary GAG/water/ethanol mixture.

18.
Soft Matter ; 16(17): 4110-4114, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32322858

RESUMEN

The tripeptide glycyl-histidyl-glycine (GHG) self-assembles into long, crystalline fibrils forming a strong hydrogel (G'∼ 50 kPa) above a critical concentration of 40 mM upon the deprotonation of its imidazole group. Spectroscopic data reveal a mixture of helically twisted ß-sheets and monomers to coexist in the gel phase.


Asunto(s)
Hidrogeles/química , Imidazoles/química , Oligopéptidos/química , Concentración de Iones de Hidrógeno , Conformación Molecular , Multimerización de Proteína , Protones
19.
J Colloid Interface Sci ; 564: 499-509, 2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-31883655

RESUMEN

HYPOTHESIS: The cationic tripeptide glycylalanylglycine (GAG) self-assembles into long, thick crystalline fibrils in an ethanol/water solution. At sufficiently high concentrations, the fibrils form a volume spanning hydrogel network. We report an extensive rheology and microscopy-based study regarding the self-assembly of GAG in ethanol/water solutions to understand the conditions for fibril formation as well as the thermal stability for future developments of this material. EXPERIMENTS: By systematically varying GAG concentration and ethanol fraction, we observe a two-dimensional fibril aggregate phase diagram. Microscopy studies shed light on the shape and size of fibrils as well as the macroscopic packing depending on conditions. The kinetics and evolution of the macroscopic fibril microstructure was investigated using rheology. FINDINGS: The mechanism of fibril formation is put into the context of a solubility framework, where ethanol reduces peptide solubility and induces self-assembly. The rate of fibril formation and strength of the gel can be controlled by peptide concentration and ethanol fraction. The faster rate of fibril formation leads to inhomogeneous packing of fibrils denoted by discrete dense fibril clusters. The solubility of the fibrils can be manipulated by temperature making the gel thermo-switchable, a property of interest for biomedical systems.


Asunto(s)
Etanol/química , Hidrogeles/química , Oligopéptidos/química , Agua/química , Microscopía
20.
BMC Cancer ; 19(1): 614, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234819

RESUMEN

BACKGROUND: Malignant pleural effusion (MPE) is a devastating sequela associated with cancer. Talc pleurodesis is a common treatment strategy for MPE but has been estimated to be unsuccessful in up to 20-50% of patients. Clinical failure of talc pleurodesis is thought to be due to poor dispersion. This monograph reports the development of a foam delivery system designed to more effectively coat the pleural cavity. METHODS: C57BL/6 mice were injected with Lewis lung carcinoma (LL/2) cells intrapleurally to induce MPE. The mice then received either normal saline (NS) control, foam control (F), talc slurry (TS, 2 mg/g) or talc foam (TF, 2 mg/g). Airspace volume was evaluated by CT, lungs/pleura were collected, and percent fibrosis was determined. RESULTS: The TF group had significantly better survival than the TS group (21 vs 13.5 days, p < 0.0001). The average effusion volume was less in the talc groups compared to the control group (140 vs 628 µL, p < 0.001). TF induced significant lung fibrosis (p < 0.01), similar to TS. On CT, TF significantly (p < 0.05) reduced loss of right lung volume (by 30-40%) compared to the control group. This was not seen with TS (p > 0.05). CONCLUSIONS: This report describes using a novel talc foam delivery system for the treatment of MPE. In the LL/2 model, mice treated with the TF had better survival outcomes and less reduction of lung volume than mice treated with the standard of care TS. These data provide support for translational efforts to move talc foam from animal models into clinical trials.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Derrame Pleural Maligno/terapia , Pleurodesia/métodos , Soluciones Esclerosantes/uso terapéutico , Talco/uso terapéutico , Animales , Carcinoma Pulmonar de Lewis/complicaciones , Modelos Animales de Enfermedad , Femenino , Fibrosis/diagnóstico , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Pulmón/patología , Mediciones del Volumen Pulmonar , Masculino , Ratones , Ratones Endogámicos C57BL , Pleura/patología , Derrame Pleural Maligno/etiología , Soluciones Esclerosantes/administración & dosificación , Talco/administración & dosificación , Temperatura de Transición , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...