Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 6(44)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33127682

RESUMEN

The end-Cretaceous bolide impact triggered the devastation of marine ecosystems. However, the specific kill mechanism(s) are still debated, and how primary production subsequently recovered remains elusive. We used marine plankton microfossils and eco-evolutionary modeling to determine strategies for survival and recovery, finding that widespread phagotrophy (prey ingestion) was fundamental to plankton surviving the impact and also for the subsequent reestablishment of primary production. Ecological selectivity points to extreme post-impact light inhibition as the principal kill mechanism, with the marine food chain temporarily reset to a bacteria-dominated state. Subsequently, in a sunlit ocean inhabited by only rare survivor grazers but abundant small prey, it was mixotrophic nutrition (autotrophy and heterotrophy) and increasing cell sizes that enabled the eventual reestablishment of marine food webs some 2 million years later.

2.
Nature ; 574(7777): 242-245, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554971

RESUMEN

The Chicxulub bolide impact 66 million years ago drove the near-instantaneous collapse of ocean ecosystems. The devastating loss of diversity at the base of ocean food webs probably triggered cascading extinctions across all trophic levels1-3 and caused severe disruption of the biogeochemical functions of the ocean, and especially disrupted the cycling of carbon between the surface and deep sea4,5. The absence of sufficiently detailed biotic data that span the post-extinction interval has limited our understanding of how ecosystem resilience and biochemical function was restored; estimates6-8 of ecosystem 'recovery' vary from less than 100 years to 10 million years. Here, using a 13-million-year-long nannoplankton time series, we show that post-extinction communities exhibited 1.8 million years of exceptional volatility before a more stable equilibrium-state community emerged that displayed hallmarks of resilience. The transition to this new equilibrium-state community with a broader spectrum of cell sizes coincides with indicators of carbon-cycle restoration and a fully functioning biological pump9. These findings suggest a fundamental link between ecosystem recovery and biogeochemical cycling over timescales that are longer than those suggested by proxies of export production7,8, but far shorter than the return of taxonomic richness6. The fact that species richness remained low as both community stability and biological pump efficiency re-emerged suggests that ecological functions rather than the number of species are more important to community resilience and biochemical functions.


Asunto(s)
Aclimatación , Biodiversidad , Ecosistema , Extinción Biológica , Animales , Isótopos de Carbono/análisis , Cadena Alimentaria , Fósiles , Historia Antigua , Plancton/clasificación , Plancton/aislamiento & purificación
3.
Philos Trans A Math Phys Eng Sci ; 376(2130)2018 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-30177560

RESUMEN

Past global warming events such as the Palaeocene-Eocene Thermal Maximum (PETM-56 Ma) are attributed to the release of vast amounts of carbon into the ocean, atmosphere and biosphere with recovery ascribed to a combination of silicate weathering and organic carbon burial. The phytoplanktonic nannoplankton are major contributors of organic and inorganic carbon but their role in this recovery process remains poorly understood and complicated by their contribution to marine calcification. Biocalcification is implicated not only in long-term carbon burial but also both short-term positive and negative climatic feedbacks associated with seawater buffering and responses to ocean acidification. Here, we use exceptional records of preserved fossil coccospheres to reconstruct cell size distribution, biomass production (particulate organic carbon, POC) and (particulate) inorganic carbon (PIC) yields of three contrasting nannoplankton communities (Bass River-outer shelf, Maud Rise-uppermost bathyal, Shatsky Rise-open ocean) through the PETM onset and recovery. Each of the sites shows contrasting community responses across the PETM as a function of their taxic composition and total community biomass. Our results indicate that nannoplankton PIC:POC had no role in short-term climate feedback and, as such, their importance as a source of CO2 to the environment is a red herring. It is nevertheless likely that shifts to greater numbers of smaller cells at the shelf site in particular led to greater carbon transfer efficiency, and that nannoplankton productivity and export across the shelves had a significant modulating effect on carbon sequestration during the PETM recovery.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.


Asunto(s)
Calcificación Fisiológica , Fenómenos Geológicos , Plancton/fisiología , Temperatura , Biomasa , Cambio Climático , Planeta Tierra , Fósiles , Nutrientes/metabolismo , Plancton/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...