Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 46(6): 1172-1182, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33007779

RESUMEN

The basolateral amygdala (BLA) modulates the consolidation of dorsal hippocampus (DH)-dependent spatial and dorsolateral striatum (DLS)-dependent cued-response memories, often in competition with one another. Evidence suggests that a critical mechanism for BLA influences on memory consolidation is via effects on activity-regulated cytoskeletal-associated protein (ARC) in downstream brain regions. However, the circuitry by which the BLA modulates ARC in multiple competing memory systems remains unclear. Prior evidence indicates that optogenetic stimulation of BLA projections to the medial entorhinal cortex (mEC) enhances the consolidation of spatial learning and impairs the consolidation of cued-response learning, suggesting this pathway provides a circuit for favoring one system over another. Therefore, we hypothesized the BLA-mEC pathway mediates effects on downstream ARC-based synaptic plasticity related to these competing memory systems. To address this, male and female Sprague-Dawley rats underwent spatial or cued-response Barnes maze training and, 45 min later, were sacrificed for ARC analysis in synaptoneurosomes from the DH and DLS. Initial experiments found that spatial training alone increased ARC levels in the DH above those observed in control rats and rats that underwent a cued-response version of the task. Postspatial training optogenetic stimulation of the BLA-mEC pathway altered the balance of ARC expression in the DH vs. DLS, specifically shifting the balance in favor of the DH-based spatial memory system, although the precise region of ARC changes differed by sex. These findings suggest that BLA-mEC pathway influences on ARC in downstream regions are a mechanism by which the BLA can favor one memory system over another.


Asunto(s)
Complejo Nuclear Basolateral , Amígdala del Cerebelo , Animales , Corteza Entorrinal , Femenino , Hipocampo , Masculino , Ratas , Ratas Sprague-Dawley , Memoria Espacial
2.
Neural Plast ; 2016: 4273280, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27957346

RESUMEN

Vagus nerve stimulation (VNS) enhances the consolidation of extinction of conditioned fear. High frequency stimulation of the infralimbic cortex (IL) produces long-term potentiation in the basolateral amygdala (BLA) in rats given VNS-paired extinction training, whereas the same stimulation produces long-term depression in sham-treated rats. The present study investigated the state of synaptic plasticity-associated proteins in the BLA that could be responsible for this shift. Male Sprague-Dawley rats were separated into 4 groups: auditory fear conditioning only (fear-conditioned); fear conditioning + 20 extinction trials (extended-extinction); fear conditioning + 4 extinction trials paired with sham stimulation (sham-extinction); fear conditioning + 4 extinction trials paired with VNS (VNS-extinction). Freezing was significantly reduced in extended-extinction and VNS-extinction rats. Western blots were used to quantify expression and phosphorylation state of synaptic plasticity-associated proteins such as Arc, CaMKII, ERK, PKA, and AMPA and NMDA receptors. Results show significant increases in GluN2B expression and phosphorylated CaMKII in BLA samples from VNS- and extended-extinction rats. Arc expression was significantly reduced in VNS-extinction rats compared to all groups. Administration of the GluN2B antagonist ifenprodil immediately after fear extinction training blocked consolidation of extinction learning. Results indicate a role for BLA CaMKII-induced GluN2B expression and reduced Arc protein in VNS-enhanced extinction.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/biosíntesis , Proteínas del Citoesqueleto/biosíntesis , Miedo/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Receptores de N-Metil-D-Aspartato/biosíntesis , Estimulación del Nervio Vago/métodos , Amígdala del Cerebelo/efectos de los fármacos , Animales , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Proteínas del Citoesqueleto/antagonistas & inhibidores , Antagonistas de Aminoácidos Excitadores/farmacología , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Miedo/efectos de los fármacos , Miedo/psicología , Masculino , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Estimulación del Nervio Vago/psicología
3.
J Vis Exp ; (102): e53032, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26325100

RESUMEN

Extinction describes the process of attenuating behavioral responses to neutral stimuli when they no longer provide the reinforcement that has been maintaining the behavior. There is close correspondence between fear and human anxiety, and therefore studies of extinction learning might provide insight into the biological nature of anxiety-related disorders such as post-traumatic stress disorder, and they might help to develop strategies to treat them. Preclinical research aims to aid extinction learning and to induce targeted plasticity in extinction circuits to consolidate the newly formed memory. Vagus nerve stimulation (VNS) is a powerful approach that provides tight temporal and circuit-specific release of neurotransmitters, resulting in modulation of neuronal networks engaged in an ongoing task. VNS enhances memory consolidation in both rats and humans, and pairing VNS with exposure to conditioned cues enhances the consolidation of extinction learning in rats. Here, we provide a detailed protocol for the preparation of custom-made parts and the surgical procedures required for VNS in rats. Using this protocol we show how VNS can facilitate the extinction of conditioned fear responses in an auditory fear conditioning task. In addition, we provide evidence that VNS modulates synaptic plasticity in the pathway between the infralimbic (IL) medial prefrontal cortex and the basolateral complex of the amygdala (BLA), which is involved in the expression and modulation of extinction memory.


Asunto(s)
Extinción Psicológica/fisiología , Plasticidad Neuronal/fisiología , Estimulación del Nervio Vago/métodos , Amígdala del Cerebelo/fisiología , Animales , Miedo/fisiología , Humanos , Corteza Prefrontal/fisiología , Ratas
4.
Neuron ; 76(2): 325-37, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23083736

RESUMEN

Fragile X syndrome (FXS) is the leading inherited cause of autism and intellectual disability. Aberrant synaptic translation has been implicated in the etiology of FXS, but most lines of research on therapeutic strategies have targeted protein synthesis indirectly, far upstream of the translation machinery. We sought to perturb p70 ribosomal S6 kinase 1 (S6K1), a key translation initiation and elongation regulator, in FXS model mice. We found that genetic reduction of S6K1 prevented elevated phosphorylation of translational control molecules, exaggerated protein synthesis, enhanced mGluR-dependent long-term depression (LTD), weight gain, and macro-orchidism in FXS model mice. In addition, S6K1 deletion prevented immature dendritic spine morphology and multiple behavioral phenotypes, including social interaction deficits, impaired novel object recognition, and behavioral inflexibility. Our results support the model that dysregulated protein synthesis is the key causal factor in FXS and that restoration of normal translation can stabilize peripheral and neurological function in FXS.


Asunto(s)
Conducta Animal/fisiología , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/prevención & control , Síndrome del Cromosoma X Frágil/fisiopatología , Regulación de la Expresión Génica/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/deficiencia , Sinapsis/genética , Análisis de Varianza , Animales , Biofisica , Espinas Dendríticas/clasificación , Espinas Dendríticas/fisiología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Hipocampo/patología , Técnicas In Vitro , Relaciones Interpersonales , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/genética , Masculino , Aprendizaje por Laberinto/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Mutación/genética , Neuronas/clasificación , Neuronas/patología , Técnicas de Placa-Clamp , Fenotipo , Fosforilación/genética , Reconocimiento en Psicología/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Sinapsis/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA