Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34683627

RESUMEN

Hybrid methyl-ammonium (MA:CH3NH3+) lead halide MAPbX3 (X = halogen) perovskites exhibit an attractive optoelectronic performance that can be applied to the next generation of solar cells. To extend the field of interest of these hybrid materials, we describe the synthesis by a solvent-free ball-milling procedure, yielding a well crystallized, pure and moisture stable specimen of the Cd tribromide counterpart, MACdBr3, which contains chains of face-sharing CdBr6 octahedra in a framework defined in the Cmc21 (No 36) space group. The details of the structural arrangement at 295 K have been investigated by high angular resolution synchrotron x-ray diffraction (SXRD), including the orientation of the organic MA units, which are roughly aligned along the c direction, given the acentric nature of the space group. UV-vis spectra unveil a gap of 4.6 eV, which could be useful for ultraviolet detectors.

2.
ACS Omega ; 5(11): 5931-5938, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32226873

RESUMEN

We present a mechanochemical procedure, with solvent-free, green-chemistry credentials, to grow all-inorganic CsPbBr3 perovskite. The crystal structure of this perovskite and its correlations with the physicochemical properties have been studied. Synchrotron X-ray diffraction (SXRD) and neutron powder diffraction (NPD) allowed us to follow the crystallographic behavior from 4 to 773 K. Unreported features like the observed negative thermal expansion of the b unit-cell parameter stem from octahedral distortions in the 4-100 K temperature range. The mechanochemical synthesis was designed to reduce the impact energy during the milling process, leading to a defect-free, well-crystallized sample characterized by a minimum unit-cell volume and octahedral tilting angles in the low-temperature orthorhombic perovskite framework, defined in the Pbnm space group. The UV-vis diffuse reflectance spectrum shows a reduced band gap of 2.22(3) eV, and the photocurrent characterization in a photodetector reveals excellent properties with potential applications of this material in optoelectronic devices.

3.
Chemistry ; 25(17): 4496-4500, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30720928

RESUMEN

The hybrid methylammonium (MA) lead halide MAPbX3 perovskites present an appealing optoelectronic behavior with applications in high-efficiency solar cells. The orientation of the organic MA units may play an important role in the properties, given the degrees of freedom for internal motion of MA groups within the PbX6 network. The present neutron powder diffraction study reveals the dynamic features of the MA units in the hybrid perovskite series MAPb(Br1-x Clx )3 , with x=0, 0.33, 0.5, 0.67, and 1. From difference Fourier maps, the H and C/N positions were located within the PbX6 lattice; the refinement of the crystal structures unveiled the MA conformations. Three different orientations were found to exist as a function of the chlorine content (x) and, therefore, of the cubic unit-cell size. These conformations are stabilized by H-bond interactions with the halide ions, and were found to agree with those reported from theoretical calculations.

4.
Inorg Chem ; 56(22): 14214-14219, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29116775

RESUMEN

Hybrid organic-inorganic perovskites, MAPbX3 (X = halogen), containing methylammonium (MA: CH3-NH3+) in the large voids conformed by the PbX6 octahedral network, are the active absorption materials in the new generation of solar cells. CH3NH3PbBr3 is a promising member with a large band gap that gives rise to a high open circuit voltage. A deep knowledge of the crystal structure and, in particular, the MA conformation inside the perovskite cage across the phase transitions undergone below room temperature, seems essential to establish structure-property correlations that may drive to further improvements. The presence of protons requires the use of neutrons, combined with synchrotron XRD data that help to depict subtle symmetry changes undergone upon cooling. We present a consistent picture of the structural features of this fascinating material, in complement with photocurrent measurements from a photodetector device, demonstrating the potential of MAPbBr3 in optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA