Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 113(6): 588-603, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36987875

RESUMEN

Tuberculosis remains one of the leading public health problems in the world. The mechanisms that lead to the activation of the immune response against Mycobacterium tuberculosis have been extensively studied, with a focus on the role of cytokines as the main signals for immune cell communication. However, less is known about the role of other signals, such as extracellular vesicles, in the communication between immune cells, particularly during the activation of the adaptive immune response. In this study, we determined that extracellular vesicles released by human neutrophils infected with M. tuberculosis contained several host proteins that are ectosome markers. In addition, we demonstrated that extracellular vesicles released by human neutrophils infected with M. tuberculosis released after only 30 min of infection carried mycobacterial antigens and pathogen-associated molecular patterns, and we identified 15 mycobacterial proteins that were consistently found in high concentrations in extracellular vesicles released by human neutrophils infected with M. tuberculosis; these proteins contain epitopes for CD4 T-cell activation. We found that extracellular vesicles released by human neutrophils infected with M. tuberculosis increased the expression of the costimulatory molecule CD80 and of the coinhibitory molecule PD-L1 on immature monocyte-derived dendritic cells. We also found that immature and mature dendritic cells treated with extracellular vesicles released by human neutrophils infected with M. tuberculosis were able to induce IFN-γ production by autologous M. tuberculosis antigen-specific CD4 T cells, indicating that these extracellular vesicles acted as antigen carriers and transferred mycobacterial proteins to the antigen-presenting cells. Our results provide evidence that extracellular vesicles released by human neutrophils infected with M. tuberculosis participate in the activation of the adaptive immune response against M. tuberculosis.


Asunto(s)
Vesículas Extracelulares , Mycobacterium tuberculosis , Tuberculosis , Humanos , Células TH1 , Neutrófilos , Monocitos , Células Dendríticas
2.
J Leukoc Biol ; 110(3): 425-431, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34057753

RESUMEN

The immune response plays a critical role in the pathophysiology of SARS-CoV-2 infection ranging from protection to tissue damage and all occur in the development of acute respiratory distress syndrome (ARDS). ARDS patients display elevated levels of inflammatory cytokines and innate immune cells, and T and B cell lymphocytes have been implicated in this dysregulated immune response. Mast cells are abundant resident cells of the respiratory tract and are able to release different inflammatory mediators rapidly following stimulation. Recently, mast cells have been associated with tissue damage during viral infections, but their role in SARS-CoV-2 infection remains unclear. In this study, we examined the profile of mast cell activation markers in the serum of COVID-19 patients. We noticed that SARS-CoV-2-infected patients showed increased carboxypeptidase A3 (CPA3) and decreased serotonin levels in their serum when compared with symptomatic SARS-CoV-2-negative patients. CPA3 levels correlated with C-reactive protein, the number of circulating neutrophils, and quick SOFA. CPA3 in serum was a good biomarker for identifying severe COVID-19 patients, whereas serotonin was a good predictor of SARS-CoV-2 infection. In summary, our results show that serum CPA3 and serotonin levels are relevant biomarkers during SARS-CoV-2 infection. This suggests that mast cells and basophils are relevant players in the inflammatory response in COVID-19 and may represent targets for therapeutic intervention.


Asunto(s)
COVID-19/diagnóstico , Carboxipeptidasas A/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/diagnóstico , Mastocitos/inmunología , SARS-CoV-2/aislamiento & purificación , Serotonina/metabolismo , Biomarcadores/análisis , COVID-19/complicaciones , COVID-19/metabolismo , COVID-19/virología , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Mastocitos/patología , Índice de Severidad de la Enfermedad
3.
Int J Nanomedicine ; 14: 6707-6719, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31692512

RESUMEN

BACKGROUND: Tuberculosis is the leading cause of death by an infectious microorganism worldwide. Conventional treatment lasts at least six months and has adverse effects; therefore, it is important to find therapeutic alternatives that reduce the bacterial load and may reduce the treatment duration. The immune response against tuberculosis can be modulated by several mechanisms, including extracellular vesicles (EVs), which are nano-sized membrane-bound structures that constitute an efficient communication mechanism among immune cells. METHODS: The EVs released by the J774A.1 mouse macrophage cell line, both spontaneously (S-EV) and after infection with Mycobacterium tuberculosis H37Rv (Mtb-EV), were purified by ultra-centrifugation and size-exclusion chromatography. The size distribution and chemical composition of these EVs were evaluated, and their effect on the bacterial load and the production of cytokines was determined in both in vitro and in vivo models of M. tuberculosis infection. RESULTS: Mtb-EV are larger than S-EV, they contain M. tuberculosis-specific antigens (not detected in EVs released from M. fortuitum-infected J774A.1 cells) and are rich in phosphatidylserine, present in their outer membrane layer. S-EV, but not Mtb-EV, reduced the bacterial load and the production of MCP-1 and TNF-α in M. tuberculosis-infected macrophages, and these effects were reversed when phosphatidylserine was blocked with annexin V. Both S-EV and Mtb-EV significantly reduced the lung bacterial load in mice infected with M. tuberculosis after 60 days of treatment, but they had no effect on survival or on the lung pneumonic area of these mice. CONCLUSION: J774A.1 macrophages infected with M. tuberculosis H37Rv released EVs that differed in size and phosphatidylserine content from spontaneously released EVs, and these EVs also had different biological effects: S-EV reduced the mycobacterial load and the cytokine production in vitro (through a phosphatidylserine-dependent mechanism), while both EVs reduced the lung bacterial load in vivo. These results are the basis for further experiments to evaluate whether EVs improve the efficiency of the conventional treatment for tuberculosis.


Asunto(s)
Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Tuberculosis/terapia , Animales , Carga Bacteriana , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Vesículas Extracelulares/química , Vesículas Extracelulares/trasplante , Masculino , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiología
4.
Front Immunol ; 9: 272, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29520273

RESUMEN

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100-1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-ß, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with wortmannin in these cells. In conclusion, our results demonstrate that neutrophils produce different EVs in response to diverse activators, and that EV-TB activate macrophages and promote the clearance of intracellular Mtb through early superoxide anion production and autophagy induction, which is a novel role for neutrophil-derived EVs in the immune response to Mtb.


Asunto(s)
Vesículas Extracelulares/metabolismo , Macrófagos/fisiología , Mycobacterium tuberculosis/fisiología , Neutrófilos/inmunología , Tuberculosis/inmunología , Autofagia , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Espacio Intracelular , Activación de Macrófagos , Proteínas Asociadas a Microtúbulos/metabolismo , Neutrófilos/microbiología , Transporte de Proteínas
5.
Nat Prod Commun ; 9(6): 853-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25115098

RESUMEN

Dialyzable leukocyte extracts (DLE) transfer specific cell-mediated immune responses from sensitized donors to non-immune recipients. In addition, DLE have several immunomodulatory effects and are used for the treatment of several infectious and non-infectious diseases. Previous studies showed that human DLE obtained from virus-infected leukocytes and bovine DLE decrease the production of the pro-inflammatory cytokine TNF-alpha in response to bacterial lipopolysaccharide, in vitro and in vivo. In the present work, we inquire as to whether DLE from uninfected human leukocytes have the ability to regulate cytokine production in peripheral blood mononuclear cells (PBMC) in vitro. We observed that PBMC from healthy individuals were able to produce TNF-alpha, IL-12 and IL-10 after stimulation with DLE. Moreover, we identified monocytes as the main cell population that produced TNF-alpha after DLE stimulation. Interestingly, we found that DLE contain unidentified ligands that activate Toll-like receptor (TLR)-2. Finally, we observed that DLE directly activated monocytes through TLR-2. These results reveal a new biological activity of DLE, and suggest that part of the immunomodulatory properties of DLE could be attributed to TLR-2 activation on monocytes and to the induction of a pro-inflammatory environment that is crucial for control of infectious diseases.


Asunto(s)
Extractos Celulares/farmacología , Leucocitos/química , Monocitos/efectos de los fármacos , Receptor Toll-Like 2/metabolismo , Animales , Extractos Celulares/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Monocitos/metabolismo , Receptor Toll-Like 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...