Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomark Res ; 11(1): 32, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941700

RESUMEN

BACKGROUND: Recent massive sequencing studies have revealed that SWI/SNF complexes are among the most frequently altered functional entities in solid tumors. However, the role of SWI/SNF in acute myeloid leukemia is poorly understood. To date, SWI/SNF complexes are thought to be oncogenic in AML or, at least, necessary to support leukemogenesis. However, mutation patterns in SWI/SNF genes in AML are consistent with a tumor suppressor role. Here, we study the SWI/SNF subunit BCL7A, which has been found to be recurrently mutated in lymphomas, but whose role in acute myeloid malignancies is currently unknown. METHODS: Data mining and bioinformatic approaches were used to study the mutational status of BCL7A and the correlation between BCL7A expression and promoter hypermethylation. Methylation-specific PCR, bisulfite sequencing, and 5-aza-2'-deoxycytidine treatment assays were used to determine if BCL7A expression was silenced due to promoter hypermethylation. Cell competition assays after BCL7A expression restoration were used to assess the role of BCL7A in AML cell line models. Differential expression analysis was performed to determine pathways and genes altered after BCL7A expression restoration. To establish the role of BCL7A in tumor development in vivo, tumor growth was compared between BCL7A-expressing and non-expressing mouse xenografts using in vivo fluorescence imaging. RESULTS: BCL7A expression was inversely correlated with promoter methylation in three external cohorts: TCGA-LAML (N = 160), TARGET-AML (N = 188), and Glass et al. (2017) (N = 111). The AML-derived cell line NB4 silenced the BCL7A expression via promoter hypermethylation. Ectopic BCL7A expression in AML cells decreased their competitive ability compared to control cells. Additionally, restoration of BCL7A expression reduced tumor growth in an NB4 mouse xenograft model. Also, differential expression analysis found that BCL7A restoration altered cell cycle pathways and modified significantly the expression of genes like HMGCS1, H1-0, and IRF7 which can help to explain its tumor suppressor role in AML. CONCLUSIONS: BCL7A expression is silenced in AML by promoter methylation. In addition, restoration of BCL7A expression exerts tumor suppressor activity in AML cell lines and xenograft models.

2.
Mol Cancer ; 22(1): 39, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810086

RESUMEN

Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Neoplasias , Humanos , Neoplasias/metabolismo , Genes Supresores de Tumor , Mutación , Neoplasias Hematológicas/genética
3.
Oncogene ; 41(28): 3611-3624, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35680984

RESUMEN

Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial-mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Diferenciación Celular , Línea Celular Tumoral , Plasticidad de la Célula/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas del Grupo Polycomb
4.
Cell Oncol (Dordr) ; 45(2): 323-332, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35182388

RESUMEN

PURPOSE: Plakophilin 1 (PKP1) is well-known as an important component of the desmosome, a cell structure specialized in spot-like cell-to-cell adhesion. Although desmosomes have generally been associated with tumor suppressor functions, we recently found that PKP1 is recurrently overexpressed in squamous cell lung cancer (SqCLC) to exert an oncogenic role by enhancing the translation of MYC (c-Myc), a major oncogene. In this study, we aim to further characterize the functional relationship between PKP1 and MYC. METHODS: To determine the functional relationship between PKP1 and MYC, we performed correlation analyses between PKP1 and MYC mRNA expression levels, gain/loss of function models, chromatin immunoprecipitation (ChIP) and promoter mutagenesis followed by luciferase assays. RESULTS: We found a significant correlation between the mRNA levels of MYC and PKP1 in SqCLC primary tumor samples. In addition, we found that MYC is a direct transcription factor of PKP1 and binds to specific sequences within its promoter. In agreement with this, we found that MYC knockdown reduced PKP1 protein expression in different SqCLC models, which may explain the PKP1-MYC correlation that we found. Conversely, we found that PKP1 knockdown reduced MYC protein expression, while PKP1 overexpression enhanced MYC expression in these models. CONCLUSIONS: Based on these results, we propose a feedforward functional relationship in which PKP1 enhances MYC translation in conjunction with the translation initiation complex by binding to the 5'-UTR of MYC mRNA, whereas MYC promotes PKP1 transcription by binding to its promoter. These results suggest that PKP1 may serve as a therapeutic target for SqCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Células Epiteliales/patología , Humanos , Neoplasias Pulmonares/patología , Placofilinas/genética , Placofilinas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/genética
6.
Cancers (Basel) ; 12(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321963

RESUMEN

Mammalian SWI/SNF (SWitch/Sucrose Non-Fermentable) complexes are ATP-dependent chromatin remodelers whose subunits have emerged among the most frequently mutated genes in cancer. Studying SWI/SNF function in cancer cell line models has unveiled vulnerabilities in SWI/SNF-mutant tumors that can lead to the discovery of new therapeutic drugs. However, choosing an appropriate cancer cell line model for SWI/SNF functional studies can be challenging because SWI/SNF subunits are frequently altered in cancer by various mechanisms, including genetic alterations and post-transcriptional mechanisms. In this work, we combined genomic, transcriptomic, and proteomic approaches to study the mutational status and the expression levels of the SWI/SNF subunits in a panel of 38 lung adenocarcinoma (LUAD) cell lines. We found that the SWI/SNF complex was mutated in more than 76% of our LUAD cell lines and there was a high variability in the expression of the different SWI/SNF subunits. These results underline the importance of the SWI/SNF complex as a tumor suppressor in LUAD and the difficulties in defining altered and unaltered cell models for the SWI/SNF complex. These findings will assist researchers in choosing the most suitable cellular models for their studies of SWI/SNF to bring all of its potential to the development of novel therapeutic applications.

7.
Cancers (Basel) ; 12(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348573

RESUMEN

Pediatric acute B-cell lymphoblastic leukemia (B-ALL) constitutes a heterogeneous and aggressive neoplasia in which new targeted therapies are required. Long non-coding RNAs have recently emerged as promising disease-specific biomarkers for the clinic. Here, we identified pediatric B-ALL-specific lncRNAs and associated mRNAs by comparing the transcriptomic signatures of tumoral and non-tumoral samples. We identified 48 lncRNAs that were differentially expressed between pediatric B-ALL and healthy bone marrow samples. The most relevant lncRNA/mRNA pair was AL133346.1/CCN2 (previously known as RP11-69I8.3/CTGF), whose expression was positively correlated and increased in B-ALL samples. Their differential expression pattern and their strong correlation were validated in external B-ALL datasets (Therapeutically Applicable Research to Generate Effective Treatments, Cancer Cell Line Encyclopedia). Survival curve analysis demonstrated that patients with "high" expression levels of CCN2 had higher overall survival than those with "low" levels (p = 0.042), and this gene might be an independent prognostic biomarker in pediatric B-ALL. These findings provide one of the first detailed descriptions of lncRNA expression profiles in pediatric B-ALL and indicate that these potential biomarkers could help in the classification of leukemia subtypes and that CCN2 expression could predict the survival outcome of pediatric B-cell acute lymphoblastic leukemia patients.

8.
Cancers (Basel) ; 12(8)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731343

RESUMEN

Long non-coding RNAs (lncRNAs) are a heterogeneous class of non-coding RNAs whose biological roles are still poorly understood. LncRNAs serve as gene expression regulators, frequently interacting with epigenetic factors to shape the outcomes of crucial biological processes, and playing roles in different pathologies including cancer. Over the last years, growing scientific evidence supports the key role of some lncRNAs in tumor development and proposes them as valuable biomarkers for the clinic. In this study, we aimed to characterize lncRNAs whose expression is altered in tumor samples from patients with lung adenocarcinoma (LUAD) compared to adjacent normal tissue samples. On an RT-qPCR survey of 90 cancer-related lncRNAs, we found one lncRNA, DLG2-AS1, which was consistently downregulated in 70 LUAD patients. To gain insight into its biological function, DLG2-AS1 was cloned and successfully re-expressed in LUAD cancer cell lines. We determined that DLG2-AS1 is not a cis-regulatory element of its overlapping gene DLG2, as their transcription levels were not correlated, nor did DLG2-AS1 restoration modify the expression of DLG2 protein. Furthermore, after generating a receiver operating curve (ROC) and calculating the area under curve (AUC), we found that DLG2-AS1 expression showed high sensitivity and specificity (AUC = 0.726) for the classification of LUAD and normal samples, determining its value as a potential lung cancer biomarker.

9.
Nat Metab ; 2(5): 432-446, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32694660

RESUMEN

Chronic inflammation is linked to diverse disease processes, but the intrinsic mechanisms that determine cellular sensitivity to inflammation are incompletely understood. Here, we show the contribution of glucose metabolism to inflammation-induced changes in the survival of pancreatic islet ß-cells. Using metabolomic, biochemical and functional analyses, we investigate the protective versus non-protective effects of glucose in the presence of pro-inflammatory cytokines. When protective, glucose metabolism augments anaplerotic input into the TCA cycle via pyruvate carboxylase (PC) activity, leading to increased aspartate levels. This metabolic mechanism supports the argininosuccinate shunt, which fuels ureagenesis from arginine and conversely diminishes arginine utilization for production of nitric oxide (NO), a chief mediator of inflammatory cytotoxicity. Activation of the PC-urea cycle axis is sufficient to suppress NO synthesis and shield cells from death in the context of inflammation and other stress paradigms. Overall, these studies uncover a previously unappreciated link between glucose metabolism and arginine-utilizing pathways via PC-directed ureagenesis as a protective mechanism.


Asunto(s)
Arginina/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Inflamación/prevención & control , Células Secretoras de Insulina/efectos de los fármacos , Trastornos Innatos del Ciclo de la Urea/patología , Urea/metabolismo , Adolescente , Adulto , Anciano , Ácido Aspártico/metabolismo , Supervivencia Celular , Ciclo del Ácido Cítrico/efectos de los fármacos , Femenino , Humanos , Inflamación/patología , Células Secretoras de Insulina/patología , Masculino , Metabolómica , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Piruvato Carboxilasa/metabolismo , Trastornos Innatos del Ciclo de la Urea/metabolismo , Adulto Joven
10.
Leukemia ; 34(10): 2722-2735, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32576963

RESUMEN

Mutations in genes encoding subunits of the SWI/SNF chromatin remodeling complex are frequently found in different human cancers. While the tumor suppressor function of this complex is widely established in solid tumors, its role in hematologic malignancies is largely unknown. Recurrent point mutations in BCL7A gene, encoding a subunit of the SWI/SNF complex, have been reported in diffuse large B-cell lymphoma (DLBCL), but their functional impact remains to be elucidated. Here we show that BCL7A often undergoes biallelic inactivation, including a previously unnoticed mutational hotspot in the splice donor site of intron one. The splice site mutations render a truncated BCL7A protein, lacking a portion of the amino-terminal domain. Moreover, restoration of wild-type BCL7A expression elicits a tumor suppressor-like phenotype in vitro and in vivo. In contrast, splice site mutations block the tumor suppressor function of BCL7A by preventing its binding to the SWI/SNF complex. We also show that BCL7A restoration induces transcriptomic changes in genes involved in B-cell activation. In addition, we report that SWI/SNF complex subunits harbor mutations in more than half of patients with germinal center B-cell (GCB)-DLBCL. Overall, this work demonstrates the tumor suppressor function of BCL7A in DLBCL, and highlights that the SWI/SNF complex plays a relevant role in DLBCL pathogenesis.


Asunto(s)
Genes Supresores de Tumor , Linfoma de Células B Grandes Difuso/genética , Proteínas de Microfilamentos/genética , Mutación , Proteínas Oncogénicas/genética , Dominios y Motivos de Interacción de Proteínas/genética , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Cromatografía Liquida , Proteínas Cromosómicas no Histona/metabolismo , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Activación de Linfocitos/inmunología , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/terapia , Ratones , Proteínas de Microfilamentos/química , Imagen Molecular , Complejos Multiproteicos , Proteínas Oncogénicas/química , Unión Proteica , Espectrometría de Masas en Tándem , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Oncogene ; 39(32): 5494, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31937909

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Oncogene ; 39(32): 5479-5493, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31822797

RESUMEN

Plakophilin 1 (PKP1) is a member of the arm-repeat (armadillo) and plakophilin gene families and it is an essential component of the desmosomes. Although desmosomes have generally been associated with tumor suppressor functions, we have consistently observed that PKP1 is among the top overexpressed proteins in squamous cell lung cancer. To explore this paradox, we developed in vivo and in vitro functional models of PKP1 gain/loss in squamous cell lung cancer. CRISPR-Cas9 PKP1 knockout severely impaired cell proliferation, but it increased cell dissemination. In addition, PKP1 overexpression increased cell proliferation, cell survival, and in vivo xenograft engraftment. We further investigated the molecular mechanism of the mainly oncogenic function of PKP1 by combining transcriptomics, proteomics, and protein-nucleic acid interaction assays. Interestingly, we found that PKP1 enhances MYC translation in collaboration with the translation initiation complex by binding to the 5'-UTR of MYC mRNA. We propose PKP1 as an oncogene in SqCLC and a novel posttranscriptional regulator of MYC. PKP1 may be a valuable diagnostic biomarker and potential therapeutic target for SqCLC. Importantly, PKP1 inhibition may indirectly target MYC, a primary anticancer target.

14.
Diabetes ; 65(5): 1283-96, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26868297

RESUMEN

Adaptive ß-cell replication occurs in response to increased metabolic demand during insulin resistance. The intracellular mediators of this compensatory response are poorly defined and their identification could provide significant targets for ß-cell regeneration therapies. Here we show that glucose and insulin in vitro and insulin resistance in vivo activate protein kinase C ζ (PKCζ) in pancreatic islets and ß-cells. PKCζ is required for glucose- and glucokinase activator-induced proliferation of rodent and human ß-cells in vitro. Furthermore, either kinase-dead PKCζ expression (KD-PKCζ) or disruption of PKCζ in mouse ß-cells blocks compensatory ß-cell replication when acute hyperglycemia/hyperinsulinemia is induced. Importantly, KD-PKCζ inhibits insulin resistance-mediated mammalian target of rapamycin (mTOR) activation and cyclin-D2 upregulation independent of Akt activation. In summary, PKCζ activation is key for early compensatory ß-cell replication in insulin resistance by regulating the downstream signals mTOR and cyclin-D2. This suggests that alterations in PKCζ expression or activity might contribute to inadequate ß-cell mass expansion and ß-cell failure leading to type 2 diabetes.


Asunto(s)
Ciclina D2/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Sobrepeso/metabolismo , Proteína Quinasa C/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Activación Enzimática , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/patología , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Sobrepeso/patología , Sobrepeso/fisiopatología , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/química , Proteína Quinasa C/genética , Interferencia de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal , Bancos de Tejidos
15.
Endocrinology ; 157(3): 1055-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26727107

RESUMEN

ß-Cell compensation is an essential mechanism by which ß-cells increase insulin secretion for overcoming insulin resistance to maintain euglycemia in obesity. Failure of ß-cells to compensate for insulin resistance contributes to insulin insufficiency and overt diabetes. To understand the mechanism of ß-cell compensation, we characterized the role of forkhead box O1 (FoxO1) in ß-cell compensation in mice under physiological and pathological conditions. FoxO1 is a key transcription factor that serves as a nutrient sensor for integrating insulin signaling to cell metabolism, growth, and proliferation. We showed that FoxO1 improved ß-cell compensation via 3 distinct mechanisms by increasing ß-cell mass, enhancing ß-cell glucose sensing, and augmenting ß-cell antioxidative function. These effects accounted for increased glucose-stimulated insulin secretion and enhanced glucose tolerance in ß-cell-specific FoxO1-transgenic mice. When fed a high-fat diet, ß-cell-specific FoxO1-transgenic mice were protected from developing fat-induced glucose disorder. This effect was attributable to increased ß-cell mass and function. Furthermore, we showed that FoxO1 activity was up-regulated in islets, correlating with the induction of physiological ß-cell compensation in high-fat-induced obese C57BL/6J mice. These data characterize FoxO1 as a pivotal factor for orchestrating physiological adaptation of ß-cell mass and function to overnutrition and obesity.


Asunto(s)
Adaptación Fisiológica/genética , Factores de Transcripción Forkhead/genética , Resistencia a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Dieta Alta en Grasa , Metabolismo Energético , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 2/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Immunoblotting , Secreción de Insulina , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Tamaño de los Órganos , Páncreas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transactivadores/metabolismo
16.
Nat Med ; 21(4): 383-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25751815

RESUMEN

Types 1 and 2 diabetes affect some 380 million people worldwide. Both ultimately result from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with a peak percentage (∼2%) engaged in the cell cycle in the first year of life. In embryonic life and after early childhood, beta cell replication is barely detectable. Whereas beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts. Hence, there remains an urgent need for antidiabetic therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, using a high-throughput small-molecule screen (HTS), we find that analogs of the small molecule harmine function as a new class of human beta cell mitogenic compounds. We also define dual-specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine and the nuclear factors of activated T cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation and differentiation. Using three different mouse and human islet in vivo-based models, we show that harmine is able to induce beta cell proliferation, increase islet mass and improve glycemic control. These observations suggest that harmine analogs may have unique therapeutic promise for human diabetes therapy. Enhancing the potency and beta cell specificity of these compounds are important future challenges.


Asunto(s)
Harmina/química , Células Secretoras de Insulina/citología , Factores de Transcripción NFATC/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Animales , Calcineurina/química , Diferenciación Celular , Proliferación Celular , Femenino , Células HCT116 , Células Hep G2 , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Ratones , Persona de Mediana Edad , Inhibidores de la Monoaminooxidasa/química , Ratas , Ratas Wistar , Factores de Tiempo , Adulto Joven , Quinasas DyrK
17.
Mol Endocrinol ; 29(4): 542-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25751312

RESUMEN

Human islet ß-cells exploit an autocrine dopamine (DA)-mediated inhibitory circuit to regulate insulin secretion. ß-Cells also express the DA active transporter and the large neutral amino acid transporter heterodimer enabling them to import circulating DA or its biosynthetic precursor, L-3,4-dihydroxyphenylalanine (L-DOPA). The capacity to import DA or L-DOPA from the extracellular space possibly indicates that DA may be an endocrine signal as well. In humans, a mixed meal stimulus is accompanied by contemporary serum excursions of incretins, DA and L-DOPA, suggesting that DA may act as an anti-incretin as postulated by the foregut hypothesis proposed to explain the early effects of bariatric surgery on type 2 diabetes. In this report, we take a translational step backwards and characterize the kinetics of plasma DA and incretin production after a mixed meal challenge in a rat model and study the integration of incretin and DA signaling at the biochemical level in a rodent ß-cell line and islets. We found that there are similar excursions of incretins and DA in rats, as those reported in humans, after a mixed meal challenge and that DA counters incretin enhanced glucose-stimulated insulin secretion and intracellular signaling at multiple points from dampening calcium fluxes to inhibiting proliferation as well as apoptosis. Our data suggest that DA is an important regulator of insulin secretion and may represent 1 axis of a gut level circuit of glucose and ß-cell mass homeostasis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Dopamina/farmacología , Polipéptido Inhibidor Gástrico/farmacología , Péptido 1 Similar al Glucagón/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Adulto , Animales , Glucemia/metabolismo , Línea Celular , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Somatostatina/farmacología
18.
Diabetes ; 63(1): 216-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24089510

RESUMEN

Hepatocyte growth factor (HGF) is a mitogen required for ß-cell replication during pregnancy. To determine whether HGF/c-Met signaling is required for ß-cell regeneration, we characterized mice with pancreatic deletion of the HGF receptor, c-Met (PancMet KO mice), in two models of reduced ß-cell mass and regeneration: multiple low-dose streptozotocin (MLDS) and partial pancreatectomy (Ppx). We also analyzed whether HGF administration could accelerate ß-cell regeneration in wild-type (WT) mice after Ppx. Mouse islets obtained 7 days post-Ppx displayed significantly increased c-Met, suggesting a potential role for HGF/c-Met in ß-cell proliferation in situations of reduced ß-cell mass. Indeed, adult PancMet KO mice displayed markedly reduced ß-cell replication compared with WT mice 7 days post-Ppx. Similarly, ß-cell proliferation was decreased in PancMet KO mice in the MLDS mouse model. The decrease in ß-cell proliferation post-Ppx correlated with a striking decrease in D-cyclin levels. Importantly, PancMet KO mice showed significantly diminished ß-cell mass, decreased glucose tolerance, and impaired insulin secretion compared with WT mice 28 days post-Ppx. Conversely, HGF administration in WT Ppx mice further accelerated ß-cell regeneration. These results indicate that HGF/c-Met signaling is critical for ß-cell proliferation in situations of diminished ß-cell mass and suggest that activation of this pathway can enhance ß-cell regeneration.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología , Animales , Glucemia/metabolismo , Proliferación Celular , Diabetes Mellitus Experimental/metabolismo , Femenino , Factor de Crecimiento de Hepatocito/farmacología , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Noqueados , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Pancreatectomía , Embarazo , Proteínas Proto-Oncogénicas c-met/genética , Regeneración/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...