Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Oncol ; 13: 1290505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107068

RESUMEN

Background: Children with B-cell acute lymphoblastic leukemia (B-ALL) have an immune imbalance that is marked by remodeling of the hematopoietic compartment, with effects on peripheral blood (PB). Although the bone marrow (BM) is the main maintenance site of malignancy, the frequency with which immune cells and molecules can be monitored is limited, thus the identification of biomarkers in PB becomes an alternative for monitoring the evolution of the disease. Methods: Here, we characterize the systemic immunological profile in children undergoing treatment for B-ALL, and evaluate the performance of cell populations, chemokines and cytokines as potential biomarkers during clinical follow-up. For this purpose, PB samples from 20 patients with B-ALL were collected on diagnosis (D0) and during induction therapy (days 8, 15 and 35). In addition, samples from 28 children were used as a control group (CG). The cellular profile (NK and NKT-cells, Treg, CD3+ T, CD4+ T and CD8+ T cells) and soluble immunological mediators (CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-6, TNF, IFN-γ, IL-17A, IL- 4, IL-10 and IL-2) were evaluated via flow cytometry immunophenotyping and cytometric bead array assay. Results: On D0, B-ALL patients showed reduction in the frequency of cell populations, except for CD4+ T and CD8+ T cells, which together with CCL2, CXCL9, CXCL10, IL-6 and IL-10 were elevated in relation to the patients of the CG. On D8 and D15, the patients presented a transition in the immunological profile. While, on D35, they already presented an opposite profile to D0, with an increase in NKT, CD3+ T, CD4+ T and Treg cells, along with CCL5, and a decrease in the levels of CXCL9, CXCL10 and IL-10, thus demonstrating that B-ALL patients present a complex and dynamic immune network during induction therapy. Furthermore, we identified that many immunological mediators could be used to classify the therapeutic response based on currently used parameters. Conclusion: Finally, it is noted that the systemic immunological profile after remission induction still differs significantly when compared to the GC and that multiple immunological mediators performed well as serum biomarkers.

2.
BMC Cancer ; 23(1): 1136, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993804

RESUMEN

BACKGROUND: The lactate receptor GPR81 contributes to cancer development through unclear mechanisms. Here, we investigate the roles of GPR81 in three-dimensional (3D) and in vivo growth of breast cancer cells and study the molecular mechanisms involved. METHODS: GPR81 was stably knocked down (KD) in MCF-7 human breast cancer cells which were subjected to RNA-seq analysis, 3D growth, in situ- and immunofluorescence analyses, and cell viability- and motility assays, combined with KD of key GPR81-regulated genes. Key findings were additionally studied in other breast cancer cell lines and in mammary epithelial cells. RESULTS: GPR81 was upregulated in multiple human cancer types and further upregulated by extracellular lactate and 3D growth in breast cancer spheroids. GPR81 KD increased spheroid necrosis, reduced invasion and in vivo tumor growth, and altered expression of genes related to GO/KEGG terms extracellular matrix, cell adhesion, and Notch signaling. Single cell in situ analysis of MCF-7 cells revealed that several GPR81-regulated genes were upregulated in the same cell clusters. Notch signaling, particularly the Notch ligand Delta-like-4 (DLL4), was strikingly downregulated upon GPR81 KD, and DLL4 KD elicited spheroid necrosis and inhibited invasion in a manner similar to GPR81 KD. CONCLUSIONS: GPR81 supports breast cancer aggressiveness, and in MCF-7 cells, this occurs at least in part via DLL4. Our findings reveal a new GPR81-driven mechanism in breast cancer and substantiate GPR81 as a promising treatment target.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Ácido Láctico/metabolismo , Ligandos , Transducción de Señal , Necrosis , Receptor Notch1/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
Compr Rev Food Sci Food Saf ; 22(6): 4302-4354, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37616018

RESUMEN

Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.


Asunto(s)
Lipidómica , Lípidos , Humanos , Lipidómica/métodos , Ácidos Grasos , Triglicéridos , Frutas
4.
Crit Rev Food Sci Nutr ; : 1-29, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37178132

RESUMEN

Tree nuts and oily fruits are used as a diet complement and are highly consumed worldwide. The production and consumption of these foods have been increasing, and an enormous global market value is forecasted for 2023. Besides their high nutritional value and lipid content, they provide health benefits to fat metabolism, heart, skin, and brain. The industrial by-products of these oily foods represent promising raw materials for many industries. However, the lipidomic analysis of nuts and oily fruits is still in its early stages. State-of-the-art analytical approaches for the lipid profiling and fingerprinting of nuts and oily fruits have been developed using high-performance liquid chromatography and high-resolution mass spectrometry for the accurate identification and structural characterization at the molecular species level. It is expected to bring a new understanding of these everyday foods' nutritional and functional value. This review comprises the oil content and lipid composition of various nuts and oily fruits, particularly those mostly consumed worldwide and having recognized beneficial health effects, biological activities associated with the lipids from different oily foodstuffs, analytical methodologies to analyze lipids in nuts and oily fruits, and the potential biotechnological applications of their industrial by-products for a lipid-based commercial valorization.

5.
Biochimie ; 203: 32-39, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36181961

RESUMEN

The growing resistance from pathogens against antibiotics has increased the research for new compounds and strategies with antibacterial potential. Lipids from algae are emerging as natural and potent bioactive molecules with interesting results regarding the inactivation of bacteria, viruses, and fungi. The combination of algae lipids with innovative strategies, such as antibacterial photodynamic therapy (aPDT) can enhance their antimicrobial potential. In this work, we aimed to evaluate the antibacterial potential in aPDT of total lipid extracts and polar lipid fractions from the green macroalga, Codium tomentosum, and the green microalga, Chlorella vulgaris on a Gram-positive bacteria Staphylococcus aureus. Total lipid extracts and polar lipid fractions were characterized by LC-MS. The results revealed that the total extracts of algae promote S. aureus inhibition after light irradiation, with a decrease of ca. 6 log10 (CFU/mL) after 15 min of treatment with both extracts of algae. The polar lipid fractions, composed by phospholipids, glycolipids and betaine lipids, from C. tomentosum and C. vulgaris also revealed antibacterial potential in combination with aPDT, but a decrease of ca. 6 log10 (CFU/mL) was reached at 60 min of treatment, later than with the total extracts. These results unveil algae lipids as antibacterial compounds in combination with aPDT displaying an alternative from natural origin to tackle pathogen resistance.


Asunto(s)
Chlorella vulgaris , Chlorophyta , Fotoquimioterapia , Bioprospección , Antibacterianos/farmacología , Staphylococcus aureus , Fotoquimioterapia/métodos , Lípidos
6.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457141

RESUMEN

Neuroblastoma is the most common extracranial solid tumor of childhood, with heterogeneous clinical manifestations ranging from spontaneous regression to aggressive metastatic disease. The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that senses plasmatic fluctuation in the extracellular concentration of calcium and plays a key role in maintaining calcium homeostasis. We have previously reported that this receptor exhibits tumor suppressor properties in neuroblastoma. The activation of CaSR with cinacalcet, a positive allosteric modulator of CaSR, reduces neuroblastoma tumor growth by promoting differentiation, endoplasmic reticulum (ER) stress and apoptosis. However, cinacalcet treatment results in unmanageable hypocalcemia in patients. Based on the bias signaling shown by calcimimetics, we aimed to identify a new drug that might exert tumor-growth inhibition similar to cinacalcet, without affecting plasma calcium levels. We identified a structurally different calcimimetic, AC-265347, as a promising therapeutic agent for neuroblastoma, since it reduced tumor growth by induction of differentiation, without affecting plasma calcium levels. Microarray analysis suggested biased allosteric modulation of the CaSR signaling by AC-265347 and cinacalcet towards distinct intracellular pathways. No upregulation of genes involved in calcium signaling and ER stress were observed in patient-derived xenografts (PDX) models exposed to AC-265347. Moreover, the most significant upregulated biological pathways promoted by AC-265347 were linked to RHO GTPases signaling. AC-265347 upregulated cancer testis antigens (CTAs), providing new opportunities for CTA-based immunotherapies. Taken together, this study highlights the importance of the biased allosteric modulation when targeting GPCRs in cancer. More importantly, the capacity of AC-265347 to promote differentiation of malignant neuroblastoma cells provides new opportunities, alone or in combination with other drugs, to treat high-risk neuroblastoma patients.


Asunto(s)
Hipocalcemia , Neuroblastoma , Calcio/metabolismo , Cinacalcet/farmacología , Humanos , Masculino , Neuroblastoma/tratamiento farmacológico , Receptores Sensibles al Calcio/metabolismo
7.
Foods ; 11(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35407039

RESUMEN

Olive seeds have been considered as a new nutritionally healthy food supplement. They are rich in monounsaturated n-9 and essential polyunsaturated n-6 lipids. However, little is known about their polar lipids, potentially bioactive and chemical identity markers for olive pulp and oil. This work aimed to identify the polar lipidome of olive seeds to find possible bioactive compounds and markers of geographic origin, by studying samples from six Portuguese sub-regions. Polar lipids were obtained by solid/liquid extraction, NH2-solid-phase extraction, and identified by hydrophilic interaction liquid chromatography (HILIC)-HR-ESI-MS and MS/MS. Ninety-four compounds were identified, including phospholipids, glycolipids, sphingolipids, and acyl sterol glycosides, several of which bear polyunsaturated fatty acids. Multivariate statistical analysis found unique profiles within each sub-region and markers of geographic identity, primarily phosphatidylcholines, phosphatidylethanolamines, and lysophosphatidylethanolamines. Therefore, polar lipid signatures should be further investigated, to assess their bioactivity, nutritional value, and chemical identity for valuing olive seeds and their oil.

8.
Front Oncol ; 11: 696032, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646761

RESUMEN

Different factors are used as predictors of unfavorable clinical outcomes in B-Cell Acute Lymphoblastic Leukemia (B-ALL) patients. However, new prognostic markers are needed in order to allow treatment to be more accurate, providing better results and an improved quality of life. In the present study, we have characterized the profile of bone marrow soluble mediators as possible biomarkers for risk group stratification and minimal residual disease (MRD) detection during induction therapy. The study featured 47 newly-diagnosed B-cell acute lymphoblastic leukemia (B-ALL) patients that were categorized into subgroups during induction therapy according to risk stratification at day 15 [Low Risk (LR), Low Risk increasing to High Risk (LR→HR) and High Risk (HR)] and the MRD detection on day 35 (MRD(-) and MRD(+)). Soluble immunological mediators (CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-1ß, IL-6, TNF, IFN-γ, IL-17A, IL-4, IL-5, IL-10 and IL-2) were quantified by cytometric bead array and ELISA. Our findings demonstrated that increased levels of CCL5, IFN-γ and IL-2 at baseline appeared as putative candidates of good prognosis in LR and MRD(-) subgroups, while CCL2 was identified as a consistent late biomarker associated with poor prognosis, which was observed on D35 in HR and MRD(+) subgroups. Furthermore, apparently controversial data regarding IL-17A and TNF did not allow the definition of these molecules as either positive or negative biomarkers. These results contribute to the search for novel prognostic indicators, and indicate the potential of bone marrow soluble mediators in prognosis and follow-up of B-ALL patients during induction therapy.

9.
J Oncol ; 2021: 5530650, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335758

RESUMEN

In the hematopoietic microenvironment, leukemic cells secrete factors that imbalanced chemokine and cytokine production. However, the network of soluble immunological molecules in the bone marrow microenvironment of acute lymphoblastic leukemia (ALL) remains underexplored. Herein, we evaluated the levels of the immunological molecules (CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-6, TNF, IFN-γ, IL-17A, IL-4, IL-10, and IL-2) in the bone marrow plasma of 47 recently diagnosed B-cell acute lymphoblastic leukemia (B-ALL) patients during induction therapy using cytometric beads arrays. The results demonstrated that B-ALL patients showed high levels of CXCL9, CXCL10, IL-6, and IL-10 at the time of diagnosis, while at the end of induction therapy, a decrease in the levels of these immunological molecules and an increase in CCL5, IFN-γ, and IL-17A levels were observed. These findings indicate that B-ALL patients have an imbalance in chemokines and cytokines in the bone marrow microenvironment that contributes to suppressing the immune response. This immune imbalance may be associated with the presence of leukemic cells since, at the end of the induction therapy, with the elimination and reduction to residual cells, the proinflammatory profile is reestablished, characterized by an increase in the cytokines of the Th1 and Th17 profiles.

10.
J Agric Food Chem ; 69(11): 3466-3478, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33721493

RESUMEN

Frying allows cooking food while promoting their organoleptic properties, imparting crunchiness and flavor. The drawback is the oxidation of triacylglycerides (TAGs), leading to the formation of primary oxidized TAGs. Although they have been associated with chronic and degenerative diseases, they are precursors of pleasant flavors in fried foods. Nevertheless, there is a lack of knowledge about the oxidation species present in foods and their involvement in positive/negative health effects. In this work, high-resolution (HR) C30 reversed-phase (RP)-liquid chromatography (LC)-tandem HR mass spectrometry (MS/MS) was used to identify primary oxidation TAGs resulting from heating triolein (160 °C, 5 min). This allows simulating the initial heating process of frying oils usually used to prepare fried foods, such as chips, crisps, and snacks. Beyond hydroxy, dihydroxy, hydroperoxy, and hydroxy-hydroperoxy derivatives, already reported in phospholipids oxidized by Fenton reaction, new compounds were identified, such as dihydroxy-hydroperoxy-triolein derivatives and positional isomers (9/10- and 9/12-dihydroxy-triolein derivatives). These compounds should be considered when proposing flavor formation pathways and/or mitigating lipid-derived reactive oxygen species occurring during food frying.


Asunto(s)
Espectrometría de Masas en Tándem , Trioleína , Culinaria , Calor , Oxidación-Reducción , Temperatura
11.
Crit Rev Food Sci Nutr ; 61(8): 1305-1339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32393054

RESUMEN

Thousands of tons of fruit seeds are discarded every year worldwide as agro-industrial byproducts. Fruit seeds have a high oil content, are rich in monounsaturated fatty acids (FA) and in n-6 and n-3 polyunsaturated essential FA. Sterols, phospholipids, glycolipids, carotenoids, tocopherols and polyphenols are other seed phytochemicals that make them interesting from a commercial viewpoint. Fruit seeds have high potential as raw material for several industries, but their lipid profile remains poorly studied. Current analytical approaches for the analysis of lipids that are based on high-performance liquid chromatography and high-resolution mass spectrometry allow the separation and analysis of compounds with the accurate identification and structural characterization of molecular species in very small quantities. Even though lipidomic analysis of fruit seeds' lipids is still in its infancy, it will bring a new look over these value-added byproducts. This review covers the following topics: (a) the lipid content of various fruit seed oils; (b) their lipid composition (FA, triacylglycerol, sterol, phospholipid and glycolipid profiles), (c) current and future analytical methodologies for the analysis of lipids in fruit seeds; (d) biological activities of fruit seeds' extracts; and (e) potential biotechnological applications of fruit seed oils for their commercial valorization based on lipids.


Asunto(s)
Frutas , Fitosteroles , Ácidos Grasos , Aceites de Plantas , Tocoferoles , Triglicéridos
12.
Antibiotics (Basel) ; 9(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722192

RESUMEN

In the actual post-antibiotic era, novel ways of rethinking antimicrobial research approaches are more urgent than ever. Natural compounds with antimicrobial activity such as fatty acids and monoacylglycerols have been investigated for decades. Additionally, the interest in other lipid classes as antimicrobial agents is rising. This review provides an overview on the research about plant and marine lipids with potential antimicrobial activity, the methods for obtaining and analyzing these compounds, with emphasis on lipidomics, and future perspectives for bioprospection and applications for antimicrobial lipids. Lipid extracts or lipids isolated from higher plants, algae or marine invertebrates are promising molecules to inactivate a wide spectrum of microorganisms. These lipids include a variety of chemical structures. Present and future challenges in the research of antimicrobial lipids from natural origin are related to the investment and optimization of the analytical workflow based on lipidomics tools, complementary to the bioassay-guided fractionation, to identify the active compound(s). Also, further work is needed regarding the study of their mechanism of action, the structure-activity relationship, the synergistic effect with conventional antibiotics, and the eventual development of resistance to lipids, which, as far as is known, is unlikely.

13.
Environ Sci Pollut Res Int ; 26(36): 36967-36977, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31745801

RESUMEN

The adsorption of acid red 97 dye (RED 97) by the waste of the filamentous fungus Beauveria bassiana was analyzed. The adsorbent was obtained as a waste of a fermentative process, and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffractometry (XRD), and specific surface area (BET). After the characterization, adsorption tests were carried out to determine the ideal conditions of pH, adsorbent mass, and contact time for the process. Adsorption isotherms, thermodynamic studies, and the treatment of textile effluent were also investigated. The adsorbent characterization allowed the visualization of its amorphous structure, with irregular and heterogeneous particles. The pore diameter was 51.9 nm and the surface area was 0.247 m2 g-1. 1.2 g L-1 of the adsorbent and pH of 2.0 were the ideal conditions for RED 97 adsorption. The pseudo-second-order kinetic model was the most appropriate to represent the experimental data, being the equilibrium reached in about 110 min. The Langmuir model was the most suitable to represent the equilibrium data, with maximum adsorption capacity of 194.1 mg g-1 at 45 °C. The adsorption processes was thermodynamically spontaneous, favorable, and exothermic. In the treatment of a real textile effluent, 5 g L-1 of the spores was capable to decolorize 70% of the solution. Therefore, spore wastes of Beauveria bassiana were promising for RED 97 adsorption.


Asunto(s)
Compuestos Azo/química , Beauveria , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Esporas Fúngicas , Textiles , Termodinámica , Contaminantes Químicos del Agua/análisis
14.
Mol Oncol ; 13(9): 1959-1975, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31293052

RESUMEN

We have previously reported the expression of parathyroid hormone-like hormone (PTHLH) in well-differentiated, Schwannian stroma-rich neuroblastic tumors. The aim of this study was to functionally assess the role of PTHLH and its receptor, PTH1R, in neuroblastoma. Stable knockdown of PTHLH and PTH1R was conducted in neuroblastoma cell lines to investigate the succeeding phenotype induced both in vitro and in vivo. Downregulation of PTHLH reduced MYCN expression and subsequently induced cell cycle arrest, senescence, and migration and invasion impairment in a MYCN-amplified, TP53-mutated neuroblastoma cell line. These phenotypes were associated with reduced tumorigenicity in a murine model. We also show that PTHLH expression is not under the control of the calcium-sensing receptor in neuroblastoma. Conversely, its production is stimulated by epidermal growth factor receptor (EGFR). Accordingly, irreversible EGFR inhibition with canertinib abolished PTHLH expression. The oncogenic role of PTHLH appeared to be a consequence of its intracrine function, as downregulation of its receptor, PTH1R, increased anchorage-independent growth and induced a more undifferentiated, invasive phenotype. Respectively, high PTH1R mRNA expression was found in MYCN nonamplified primary tumors and also significantly associated with other prognostic factors of good outcome. This study provides the first evidence of the dual role of PTHLH in the behavior of neuroblastomas. Moreover, the identification of EGFR as a transcriptional regulator of PTHLH in neuroblastoma provides a novel therapeutic opportunity to promote a less aggressive tumor phenotype through irreversible inhibition of EGFR tyrosine kinase activity.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neuroblastoma/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/biosíntesis , Animales , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Mutación , Neuroblastoma/genética , Neuroblastoma/patología , Proteína Relacionada con la Hormona Paratiroidea/genética , Receptor de Hormona Paratiroídea Tipo 1/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
Molecules ; 24(14)2019 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-31337054

RESUMEN

Olives (Olea europaea L.) are classic ingredients in the Mediterranean diet with well-known health benefits, but their lipid composition has not been fully addressed. In this work, we characterised triacylglycerol (TAG) and polar lipid profiles of the olive pulp while using a complementary methodological approach that was based on solid-phase extraction to recover the neutral lipid (NL) and the polar lipid-rich fractions. The TAG profile was analysed in the NL-fraction by C30 reversed-phase liquid chromatography (LC) and the polar lipid profile by normal-phase hydrophilic interaction liquid chromatography (HILIC), with both being coupled to electrospray ionization-mass spectrometry (ESI-MS) and ESI-MS/MS. This approach identified 71 TAG ions that were attributed to more than 350 molecular species, with fatty acyl chain lengths from C11:0 to C26:0, including different polyunsaturated acyl chains. The polar lipids included 107 molecular species that belonged to 11 lipid classes that comprised phospholipids, glyceroglycolipids, glycosphingolipids, and betaine lipids. In addition to polyunsaturated fatty acids, some of the phospholipids, glycolipids, and glycosphingolipids that were identified in the olive pulp have been described as biologically active molecules. Lipidomic phenotyping of the olive pulp has led to the discovery of compounds that will allow for a better assessment of its nutritional value and new applications of bioactive lipid components in this functional food.


Asunto(s)
Frutas/metabolismo , Alimentos Funcionales , Metabolismo de los Lípidos , Lipidómica , Lípidos , Olea/metabolismo , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa , Frutas/química , Lipidómica/métodos , Lípidos/química , Estructura Molecular , Olea/química , Portugal , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Triglicéridos/química , Triglicéridos/metabolismo
16.
Front Immunol ; 10: 1367, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275315

RESUMEN

MicroRNA (miR) 155 has been implicated in the regulation of innate and adaptive immunity as well as autoimmune processes. Importantly, it has been shown to regulate several antiviral responses, but its contribution to the immune response against cytopathic viruses such as vesicular stomatitis virus (VSV) infections is not known. Using transgenic/recombinant VSV expressing ovalbumin, we show that miR-155 is crucially involved in regulating the T helper cell response against this virus. Our experiments indicate that miR-155 in CD4+ T cells controls their activation, proliferation, and cytokine production in vitro and in vivo upon immunization with OVA as well as during VSV viral infection. Using intravital multiphoton microscopy we analyzed the interaction of antigen presenting cells (APCs) and T cells after OVA immunization and found impaired complex formation when using miR-155 deficient CD4+ T cells compared to wildtype CD4+ T cells ex vivo. In contrast, miR-155 was dispensable for the maturation of myeloid APCs and for their T cell stimulatory capacity. Our data provide the first evidence that miR-155 is required for efficient CD4+ T cell activation during anti-viral defense by allowing robust APC-T cell interaction required for activation and cytokine production of virus specific T cells.


Asunto(s)
Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , MicroARNs/genética , Linfocitos T Colaboradores-Inductores/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología , Traslado Adoptivo , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Células Presentadoras de Antígenos/inmunología , Proliferación Celular/genética , Citocinas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Virus de la Estomatitis Vesicular Indiana/genética
17.
Lipids ; 54(4): 245-253, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30957876

RESUMEN

Bacillus licheniformis I89 is a Gram-positive bacterium, a producer of the lantibiotic lichenicidin. No information is available on its fatty acid (FA) composition. Bacillus species are rich in branched FA (BrFA), claimed to be beneficial to human health and to treat diseases. Herein, the FA profile of B. licheniformis I89 was evaluated under different growth conditions: at two growth temperatures (37 and 50 °C) and at different growth phases (lag, exponential, and stationary), using gas chromatography-mass spectrometry. The FA profile revealed predominant BrFA of the iso-series and anteiso-series (i-15:0, ai-15:0, i-16:0, i-17:0, and ai-17:0) and low amounts of saturated FA (14:0, 16:0, and 18:0). Comparing the FA profiles at different temperatures, in the lag phase, at 50 °C, there was a decrease of ai-17:0 and a decrease of i-15:0 in the exponential phase, in comparison with 37 °C. In all growth phases, there was a decrease of ai-15:0 and an increase of i-17:0. From the lag to the stationary phase, at 50 °C, there was a decrease of ai-17:0 and i-16:0, whereas i-15:0 increased, while at 37 °C, there was an increase of i-15:0 and i-16:0, and a decrease in ai-15:0 and ai-17:0. B. licheniformis I89 can adapt its FA profile, at moderate temperatures, by changing the iso-FA and anteiso-FA composition and the iso/anteiso ratio. This nonpathogenic bacterium species can be used as a source of BrFA with putative beneficial health effects for gut protection and with reported antitumor properties, foreseeing its use for producing compounds with biotechnological applications.


Asunto(s)
Bacillus licheniformis/metabolismo , Biotecnología/métodos , Ácidos Grasos/análisis , Ácidos Grasos/química , Cromatografía de Gases y Espectrometría de Masas
18.
Bioprocess Biosyst Eng ; 42(5): 829-838, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30739160

RESUMEN

In the present study, it was presented a strategy to maximize the cutinase production by solid-state fermentation from different microorganisms and substrates. The best results were observed using Fusarium verticillioides, rice bran being the main substrate. Maximum yield of cutinase obtained by the strain was 16.22 U/g. For concentration, ethanol precipitation was used, and the purification factor was 2.4. The optimum temperature and pH for enzyme activity were 35 °C and 6.5, respectively. The enzyme was stable at a wide range of temperature and at all pH values tested. The concentrated cutinase was used as an adjuvant in a formulation containing cutinase + bioherbicide. The use of enzyme increased the efficiency of bioherbicide, since cutinase was responsible to remove/degrade the cutin that recovery the weed leaves and difficult the bioherbicide absorption. Cutinase showed to be a promising product to be used in formulation of bioherbicides.


Asunto(s)
Hidrolasas de Éster Carboxílico , Proteínas Fúngicas , Fusarium/enzimología , Herbicidas/metabolismo , Control Biológico de Vectores , Hidrolasas de Éster Carboxílico/biosíntesis , Hidrolasas de Éster Carboxílico/química , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/química , Herbicidas/química , Concentración de Iones de Hidrógeno , Oryza/química
19.
Biol Sex Differ ; 10(1): 11, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808418

RESUMEN

The response to overfeeding is sex dependent, and metabolic syndrome is more likely associated to obesity in men or postmenopausal women than in young fertile women. We hypothesized that obesity-induced metabolic syndrome is sex dependent due to a sex-specific regulation of the fatty acid (FA) synthesis pathways in liver and white adipose depots. We aimed to identify distinctive molecular signatures between sexes using a lipidomics approach to characterize lipid species in liver, perigonadal adipose tissue, and inguinal adipose tissue and correlate them to the physiopathological responses observed. Males had less total fat but lower subcutaneous on visceral fat ratio together with higher liver weight and higher liver and serum triglyceride (TG) levels. Males were insulin resistant compared to females. Fatty acid (FA) and TG profiles differed between sexes in both fat pads, with longer chain FAs and TGs in males compared to that in females. Remarkably, hepatic phospholipid composition was sex dependent with more abundant lipotoxic FAs in males than in females. This may contribute to the sexual dimorphism in response to obesity towards more metaflammation in males. Our work presents an exhaustive novel description of a sex-specific lipid signature in the pathophysiology of metabolic disorders associated with obesity in ob/ob mice. These data could settle the basis for future pharmacological treatment in obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Caracteres Sexuales , Animales , Femenino , Metabolismo de los Lípidos , Lipidómica , Masculino , Ratones Endogámicos C57BL , Ratones Obesos
20.
Arch Biochem Biophys ; 663: 83-94, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30586545

RESUMEN

Bacillus licheniformis I89 is a non-pathogenic, Gram-positive bacterium, frequently found in soil. It has several biotechnological applications as producer of valuable compounds such as proteases, amylases, surfactants, and lantibiotics. Herein, it is reported the identification of the polar lipidome of B. licheniformis I89 during the different growth phases (lag, exponential and stationary) at 37 °C. The analytical approach relied on hydrophilic interaction liquid chromatography coupled to electrospray ionization mass spectrometry (HILIC-ESI-MS), accurate mass measurements and tandem mass spectrometry (MS/MS). In the lipidome of B. licheniformis I89 were identified four phospholipid classes: phosphatidylethanolamine, phosphatidylglycerol, lysyl-phosphatidylglycerol, and cardiolipin; two glycolipid classes: monoglycosyldiacylglycerol and diglycosyldiacylglycerol; and two phosphoglyceroglycolipid classes: mono-alanylated lipoteichoic acid primer and lipoteichoic acid primer. The same lipid species were identified at the different growth phases, but there were significant differences on the relative abundance of some molecular species. There was a significant increase in the 30:0 lipid species and a significant decrease in the 32:0 lipid species, between exponential and stationary phases, when compared to lag phase. No differences were observed between exponential and stationary phases. The lipidomic-based approach used herein is a very promising tool to be employed in the study of bacterial lipid composition, which is a requirement to understand its metabolism and response to growth conditions.


Asunto(s)
Bacillus licheniformis/metabolismo , Cromatografía Liquida/métodos , Metabolismo de los Lípidos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Bacillus licheniformis/crecimiento & desarrollo , Interacciones Hidrofóbicas e Hidrofílicas , Fosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...