Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 178: 842-846, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136903

RESUMEN

This work presents the optimization of a sample preparation procedure using microwave-assisted digestion for the determination of nickel and vanadium in crude oil employing inductively coupled plasma optical emission spectrometry (ICP OES). The optimization step was performed utilizing a two-level full factorial design involving the following factors: concentrated nitric acid and hydrogen peroxide volumes, and microwave-assisted digestion temperature. Nickel and vanadium concentrations were used as responses. Additionally, a multiple response based on the normalization of the concentrations by the highest values was built to establish a compromise condition between the two analytes. A Doehlert matrix optimized the instrumental conditions of the ICP OE spectrometer. In this design, the plasma robustness was used as chemometric response. The experiments were performed using a digested oil sample solution doped with magnesium(II) ions, as well as a standard magnesium solution. The optimized method allows for the determination of nickel and vanadium with quantification limits of 0.79 and 0.20µgg-1, respectively, for a digested sample mass of 0.1g. The precision (expressed as relative standard deviations) was determined using five replicates of two oil samples and the results obtained were 1.63% and 3.67% for nickel and 0.42% and 4.64% for vanadium. Bismuth and yttrium were also tested as internal standards, and the results demonstrate that yttrium allows for a better precision for the method. The accuracy was confirmed by the analysis of the certified reference material trace element in fuel oil (CRM NIST 1634c). The proposed method was applied for the determination of nickel and vanadium in five crude oil samples from Brazilian Basins. The metal concentrations found varied from 7.30 to 33.21µgg-1 for nickel and from 0.63 to 19.42µgg-1 for vanadium.

2.
Environ Sci Technol ; 50(6): 3031-8, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26192198

RESUMEN

Halogens in the atmosphere play an important role in climate change and also represent a potential health hazard. However, quantification of halogens is not a trivial task, and methods that require minimum sample preparation are interesting alternatives. Hence, the aim of this work was to evaluate the feasibility of direct solid sample analysis using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS) for F determination and electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICP-MS) for simultaneous Cl, Br, and I determination in airborne inhalable particulate matter (PM10) collected in the metropolitan area of Aracaju, Sergipe, Brazil. Analysis using HR-CS MAS was accomplished by monitoring the CaF molecule, which was generated at high temperatures in the graphite furnace after the addition of Ca. Analysis using ETV-ICP-MS was carried out using Ca as chemical modifier/aerosol carrier in order to avoid losses of Cl, Br, and I during the pyrolysis step, with concomitant use of Pd as a permanent modifier. The direct analysis approach resulted in LODs that were proven adequate for halogen determination in PM10, using either standard addition calibration or calibration against a certified reference material. The method allowed the quantification of the halogens in 14 PM10 samples collected in a northeastern coastal city in Brazil. The results demonstrated variations of halogen content according to meteorological conditions, particularly related to rainfall, humidity, and sunlight irradiation.


Asunto(s)
Halógenos/análisis , Espectrometría de Masas/métodos , Material Particulado/análisis , Suelo/química , Espectrofotometría Atómica/métodos , Contaminantes Atmosféricos/análisis , Brasil , Calibración , Monitoreo del Ambiente/métodos , Límite de Detección , Volatilización , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA