Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci Res ; 102(1): e25269, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284851

RESUMEN

This study aimed to evaluate the effects of inhibitors of the fractalkine pathway in hyperalgesia in inflammatory and neuropathic orofacial pain in male rats and the morphological changes in microglia and satellite glial cells (SGCs). Rats were submitted to zymosan-induced arthritis of the temporomandibular joint or infraorbital nerve constriction, and treated intrathecally with a P2 X7 antagonist, a cathepsin S inhibitor or a p-38 mitogen-activated protein kinase (MAPK) inhibitor. Mechanical hyperalgesia was evaluated 4 and 6 h following arthritis induction or 7 and 14 days following nerve ligation. The expression of the receptor CX3 CR1 , phospho-p-38 MAPK, ionized calcium-binding adapter molecule-1 (Iba-1), and glutamine synthetase and the morphological changes in microglia and SGCs were evaluated by confocal microscopy. In both inflammatory and neuropathic models, untreated animals presented a higher expression of CX3 CR1 and developed hyperalgesia and up-regulation of phospho-p-38 MAPK, which was prevented by all drugs (p < .05). The number of microglial processes endpoints and the total branch length were lower in the untreated animals, but the overall immunolabeling of Iba-1 was altered only in neuropathic rats (p < .05). The mean area of SGCs per neuron was significantly altered only in the inflammatory model (p < .05). All morphological alterations were reverted by modulating the fractalkine pathway (p < .05). In conclusion, the blockage of the fractalkine pathway seemed to be a possible therapeutic strategy for inflammatory and neuropathic orofacial pain, reducing mechanical hyperalgesia by impairing the phosphorylation of p-38 MAPK and reverting morphological alterations in microglia and SGCs.


Asunto(s)
Artritis , Neuralgia , Masculino , Animales , Ratas , Hiperalgesia/tratamiento farmacológico , Quimiocina CX3CL1 , Neuroglía , Neuralgia/tratamiento farmacológico , Proteínas Quinasas Activadas por Mitógenos , Inhibidores de Proteínas Quinasas , Dolor Facial/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos
2.
Bone ; 127: 59-66, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31121356

RESUMEN

This study evaluated the participation of CB1 and CB2 receptors in the antiresorptive effect of electroacupuncture (EA) on an experimental model of inflammatory bone loss in rats. 30 rats were divided into five groups: C (control); EP (experimental periodontitis); EA (C+ EA); EP-EA (EP+ EA in the acupoints LI4, LG11, ST36, ST44); EP - EA-sham (EP+ EA in sham acupoints). For the EP groups, a ligature was placed around the right mandibular first molars at day 1. Sessions of EA or EA-sham were assigned every other day. Animals were euthanized at day 11. Histometric analysis was performed to evaluate the percentage of bone area in the furcation area. Immunolabeling patterns in the periodontal tissues and immunofluorescent staining in the trigeminal ganglia and in the trigeminal spinal tract for CB1 and CB2 receptors were performed. It was observed increased bone loss in the furcation in the EP and EP-EA-sham groups, in comparison to the other groups (p < 0.05). Enhanced CB2 immunolabeling was observed in the periodontal tissues in the EP-EA group, when compared to the EP and EP-EA-sham groups (p < 0.05). Increased CB1 immunofluorescent staining was observed in the neural tissues in the EA treated group in comparison with the other groups (p < 0.05), while no expression of CB2 was observed in those regions. Our study showed that in the presence of inflammatory bone disease, EA treatment reduced bone erosion and increased the immunoexpression of CB1 in the neural tissues and CB2 in the periodontal tissues.


Asunto(s)
Resorción Ósea/inmunología , Resorción Ósea/terapia , Electroacupuntura , Inflamación/patología , Receptor Cannabinoide CB1/inmunología , Receptor Cannabinoide CB2/inmunología , Animales , Masculino , Periodoncio/metabolismo , Ratas Wistar , Ganglio del Trigémino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA