Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Anal Methods ; 15(30): 3752-3757, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475605

RESUMEN

This technical note describes a novel and straightforward experimental strategy for the extraction/capture of DNA using magnetic ionic liquid (MIL) followed by real time-polymerase chain reaction (qPCR) analysis. An affordable and low-cost magneto-based multiwell platform was first examined for capturing DNA allowing for simultaneous extractions that increased the analysis throughput of the experimental workflow. This configuration was composed of a series of neodymium rod magnets attached to a multiwell device in which a magneto-active extraction phase (MIL) was suspended for a single drop microextraction (SDME) approach. In this configuration, up to 32 extractions were able to be performed simultaneously, and DNA was successfully extracted from aqueous samples. Furthermore, as a proof-of-concept, this affordable and simple experimental strategy proved to be efficient for the extraction/capture of DNA from challenging samples such as whole blood without any pretreatment. This fact also consists of important feature compared to previous methodologies that required additional steps of sample preparation.


Asunto(s)
Líquidos Iónicos , ADN , Imanes , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Fenómenos Magnéticos
2.
J Sep Sci ; 45(1): 258-281, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34726337

RESUMEN

Remarkable progress has been achieved in the application of magnetic ionic liquids in microextraction-based procedures. These materials exhibit unique physicochemical properties of ionic liquids featuring additional responses to magnetic fields by incorporating a paramagnetic component within the chemical structure. This intriguing property can open new horizons in analytical extractions because the solvent manipulation is facilitated. Moreover, the tunable chemical structures of magnetic ionic liquids also allow for task-specific extractions that can significantly increase the method selectivity. This review aimed at providing an up-to-date overview of articles involving synthesis, physicochemical properties, and applications of magnetic ionic liquids highlighting recent developments and configurations. Moreover, a section containing critical evaluation and future trends in magnetic ionic liquid-based extractions is included.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...