Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Biochem Pharmacol ; 224: 116245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685281

RESUMEN

Cardiovascular disease (CVD) is the leading cause of death in rheumatoid arthritis (RA). Resistin is an adipokine that induces adipose tissue inflammation and activation of monocytes/macrophages via adenylate cyclase-associated protein-1 (CAP1). Resistin levels are increased in RA and might cause perivascular adipose tissue (PVAT) dysfunction, leading to vascular damage and CVD. This study aimed to investigate the role of resistin in promoting PVAT dysfunction by increasing local macrophage and inflammatory cytokines content in antigen-induced arthritis (AIA). Resistin pharmacological effects were assessed by using C57Bl/6J wild-type (WT) mice, humanized resistin mice expressing human resistin in monocytes-macrophages (hRTN+/-/-), and resistin knockout mice (RTN-/-) with AIA and respective controls. We investigated AIA disease activity and functional, cellular, and molecular parameters of the PVAT. Resistin did not contribute to AIA disease activity and its concentrations were augmented in the PVAT and plasma of WT AIA and hRTN+/-/- AIA animals. In vitro exposure of murine arteries to resistin impaired vascular function by decreasing the anti-contractile effect of PVAT. WT AIA mice and hRTN+/-/- AIA mice exhibited PVAT dysfunction and knockdown of resistin prevented it. Macrophage-derived cytokines, markers of types 1 and 2 macrophages, and CAP1 expression were increased in the PVAT of resistin humanized mice with AIA, but not in knockout mice for resistin. This study reveals that macrophage-derived resistin promotes PVAT inflammation and dysfunction regardless of AIA disease activity. Resistin might represent a translational target to reduce RA-driven vascular dysfunction and CVD.


Asunto(s)
Tejido Adiposo , Artritis Experimental , Macrófagos , Ratones Endogámicos C57BL , Resistina , Animales , Resistina/metabolismo , Resistina/genética , Humanos , Tejido Adiposo/metabolismo , Ratones , Macrófagos/metabolismo , Artritis Experimental/metabolismo , Ratones Noqueados , Masculino
2.
Br J Pharmacol ; 181(3): 429-446, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37625900

RESUMEN

BACKGROUND AND PURPOSE: Rheumatoid arthritis (RA) is a chronic autoimmune disease that can cause bone erosion due to increased osteoclastogenesis. Neutrophils involvement in osteoclastogenesis remains uncertain. Given that neutrophil extracellular traps (NETs) can act as inflammatory mediators in rheumatoid arthritis, we investigated the role of NETs in stimulating bone loss by potentiating osteoclastogenesis during arthritis. EXPERIMENTAL APPROACH: The level of NETs in synovial fluid from arthritis patients was assessed. Bone loss was evaluated by histology and micro-CT in antigen-induced arthritis (AIA)-induced WT mice treated with DNase or in Padi4-deficient mice (Padi4flox/flox LysMCRE ). The size and function of osteoclasts and the levels of RANKL and osteoprotegerin (OPG) released by osteoblasts that were incubated with NETs were measured. The expression of osteoclastogenic marker genes and protein levels were evaluated by qPCR and western blotting. To assess the participation of TLR4 and TLR9 in osteoclastogenesis, cells from Tlr4-/- and Tlr9-/- mice were cultured with NETs. KEY RESULTS: Rheumatoid arthritis patients had higher levels of NETs in synovial fluid than osteoarthritis patients, which correlated with increased levels of RANKL/OPG. Moreover, patients with bone erosion had higher levels of NETs. Inhibiting NETs with DNase or Padi4 deletion alleviated bone loss in arthritic mice. Consistently, NETs enhanced RANKL-induced osteoclastogenesis that was dependent on TLR4 and TLR9 and increased osteoclast resorptive functions in vitro. In addition, NETs stimulated the release of RANKL and inhibited osteoprotegerin in osteoblasts, favouring osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS: Inhibiting NETs could be an alternative strategy to reduce bone erosion in arthritis patients.


Asunto(s)
Artritis Reumatoide , Trampas Extracelulares , Humanos , Animales , Ratones , Osteoprotegerina/metabolismo , Osteoprotegerina/farmacología , Osteogénesis , Trampas Extracelulares/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 9/metabolismo , Artritis Reumatoide/metabolismo , Osteoclastos/metabolismo , Desoxirribonucleasas/metabolismo , Ligando RANK/metabolismo
3.
Cell Tissue Bank ; 25(1): 187-194, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37145371

RESUMEN

Primary cell cultures are essential tools for elucidating the physiopathological mechanisms of the cardiovascular system. Therefore, a primary culture growth protocol of cardiovascular smooth muscle cells (VSMCs) obtained from human abdominal aortas was standardized. Ten abdominal aorta samples were obtained from patients diagnosed with brain death who were organ and tissue donors with family consent. After surgical ablation to capture the aorta, the aortic tissue was removed, immersed in a Custodiol® solution, and kept between 2 and 8 °C. In the laboratory, in a sterile environment, the tissue was fragmented and incubated in culture plates containing an enriched culture medium (DMEM/G/10% fetal bovine serum, L-glutamine, antibiotics and antifungals) and kept in an oven at 37 °C and 5% CO2. The aorta was removed after 24 h of incubation, and the culture medium was changed every six days for twenty days. Cell growth was confirmed through morphological analysis using an inverted optical microscope (Nikon®) and immunofluorescence for smooth muscle alpha-actin and nuclei. The development of the VSMCs was observed, and from the twelfth day, differentiation, long cytoplasmic projections, and adjacent cell connections occurred. On the twentieth day, the morphology of the VSMCs was confirmed by actin fiber immunofluorescence, which is a typical characteristic of VSMCs. The standardization allowed VSMC growth and the replicability of the in vitro test, providing a protocol that mimics natural physiological environments for a better understanding of the cardiovascular system. Its use is intended for investigation, tissue bioengineering, and pharmacological treatments.


Asunto(s)
Aorta Abdominal , Enfermedades Vasculares , Humanos , Muerte Encefálica/metabolismo , Muerte Encefálica/patología , Músculo Liso Vascular/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología , Modelos Teóricos , Miocitos del Músculo Liso , Encéfalo , Células Cultivadas
4.
Br J Pharmacol ; 181(8): 1308-1323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990806

RESUMEN

BACKGROUND AND PURPOSE: Sepsis-surviving adult individuals commonly develop immunosuppression and increased susceptibility to secondary infections, an outcome mediated by the axis IL-33/ILC2s/M2 macrophages/Tregs. Nonetheless, the long-term immune consequences of paediatric sepsis are indeterminate. We sought to investigate the role of age in the genesis of immunosuppression following sepsis. EXPERIMENTAL APPROACH: Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2 macrophages and the DNA methylation of epithelial lung cells from post-septic infant and adult mice. Likewise, sepsis-surviving mice were inoculated intranasally with Pseudomonas aeruginosa or by subcutaneous inoculation of the B16 melanoma cell line. Finally, blood samples from sepsis-surviving patients were collected and the concentration of IL-33 and Tregs frequency were assessed. KEY RESULTS: In contrast to 6-week-old mice, 2-week-old mice were resistant to secondary infection and did not show impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels, Tregs expansion, and activation of ILC2s and M2-macrophages were observed in 6-week-old but not 2-week-old post-septic mice. Moreover, impaired IL-33 production in 2-week-old post-septic mice was associated with increased DNA methylation in lung epithelial cells. Notably, IL-33 treatment boosted the expansion of Tregs and induced immunosuppression in 2-week-old mice. Clinically, adults but not paediatric post-septic patients exhibited higher counts of Tregs and seral IL-33 levels. CONCLUSION AND IMPLICATIONS: These findings demonstrate a crucial and age-dependent role for IL-33 in post-sepsis immunosuppression. Thus, a better understanding of this process may lead to differential treatments for adult and paediatric sepsis.


Asunto(s)
Interleucina-33 , Sepsis , Humanos , Ratones , Animales , Niño , Inmunidad Innata , Linfocitos/metabolismo , Linfocitos/patología , Terapia de Inmunosupresión
6.
Cell Rep ; 42(11): 113448, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37967010

RESUMEN

CD4+ T cells are key components of the immune response during lung infections and can mediate protection against tuberculosis (TB) or influenza. However, CD4+ T cells can also promote lung pathology during these infections, making it unclear how these cells control such discrepant effects. Using mouse models of hypervirulent TB and influenza, we observe that exaggerated accumulation of parenchymal CD4+ T cells promotes lung damage. Low numbers of lung CD4+ T cells, in contrast, are sufficient to protect against hypervirulent TB. In both situations, lung CD4+ T cell accumulation is mediated by CD4+ T cell-specific expression of the extracellular ATP (eATP) receptor P2RX7. P2RX7 upregulation in lung CD4+ T cells promotes expression of the chemokine receptor CXCR3, favoring parenchymal CD4+ T cell accumulation. Our findings suggest that direct sensing of lung eATP by CD4+ T cells is critical to induce tissue CD4+ T cell accumulation and pathology during lung infections.


Asunto(s)
Gripe Humana , Tuberculosis , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos , Gripe Humana/metabolismo , Pulmón/patología , Receptores de Quimiocina/metabolismo , Tuberculosis/patología
7.
J Infect Dis ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015657

RESUMEN

BACKGROUND: The inflammation in the lungs and other vital organs in COVID-19 are characterized by the presence of neutrophils and high concentration of neutrophil extracellular traps (NETs), which also seems to mediate host tissue damage. However, it is not known whether NETs could have virucidal activity against SARS-CoV-2. METHODS: We investigated whether NETs could prevent SARS-CoV-2 replication in neutrophils and epithelial cells, and what the consequence of NETs degradation in K18-humanized ACE2 transgenic mice infected with SARS-CoV-2. RESULTS: Here, by immunofluorescence microscopy we observed that viral particles co-localize with NETs in neutrophils isolated from COVID-19 patients or from healthy individuals and infected in vitro. The inhibition of NETs production increased virus replication in neutrophils. In parallel, we observed that NETs inhibited virus abilities to infect and replicate in epithelial cells after 24 h of infection. Degradation of NETs with DNase I prevented their virucidal effect in vitro. Using K18-humanized ACE2 transgenic mice we observed a higher viral load in animals treated with DNase I. On the other hand, the virucidal effect of NETs was not dependent on neutrophil elastase or myeloperoxidase activity. CONCLUSION: Our results provide evidence of the role of NETosis as a mechanism of SARS-CoV-2 viral capture and inhibition.

8.
Clin Immunol ; 257: 109836, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37951516

RESUMEN

BACKGROUND: COVID-19 causes consequences such as imbalance of the immune system and thrombotic events. During the infection process, NETs in excess induce a pro-inflammatory response and disseminated intravascular coagulation. We evaluated the role of enoxaparin as a potential inhibitor of NETs. METHODS: K18-hACE2 animals infected with the SARS-CoV-2 virus and a group of 23 individuals admitted to the hospital with COVID-19 treated with enoxaparin or without treatment and controls without the disease were included. RESULTS: Enoxaparin decreased the levels of NETs, reduced the signs of the disease and mitigated lung damage in the animals infected with SARS-CoV-2. These effects were partially associated with prevention of SARS-CoV-2 entry and NETs synthesis. Clinical data revealed that treatment with enoxaparin decreased the levels of inflammatory markers, the levels of NETs in isolated neutrophils and the organ dysfunction. CONCLUSION: This study provides evidence for the beneficial effects of enoxaparin in COVID-19 in addition to its anticoagulant role.


Asunto(s)
COVID-19 , Trampas Extracelulares , Humanos , Animales , Neutrófilos , Enoxaparina/farmacología , SARS-CoV-2
9.
Int Immunopharmacol ; 124(Pt B): 111007, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778170

RESUMEN

The STING signaling pathway has gained attention over the last few years due to its ability to incite antimicrobial and antitumoral immunity. Conversely, in mouse models of autoimmunity such as colitis and multiple sclerosis, where TH17 cells are implicated in tissue inflammation, STING activation has been associated with the attenuation of immunogenic responses. In this line, STING was found to limit murine TH17 pro-inflammatory program in vitro. Here we demonstrate that 2'3'-c-di-AM(PS)2(Rp,Rp), a STING agonist that has been undergoing clinical trials for antitumor immunotherapy, activates the STING signalosome in differentiating human TH17 cells. Of particular interest, 2'3'-c-di-AM(PS)2(Rp,Rp) reduces IL-17A production and IL23R expression by human TH17 cells while it favors the generation of regulatory T (Treg) cells. These findings suggest that STING agonists may be promising approaches for treating human TH17-mediated chronic inflammation.


Asunto(s)
Colitis , Inflamación , Humanos , Ratones , Animales , Inflamación/metabolismo , Transducción de Señal , Colitis/patología , Modelos Animales de Enfermedad , Células Th17
10.
Nat Commun ; 14(1): 4280, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460614

RESUMEN

Neutrophils rely predominantly on glycolytic metabolism for their biological functions, including reactive oxygen species (ROS) production. Although pyruvate kinase M2 (PKM2) is a glycolytic enzyme known to be involved in metabolic reprogramming and gene transcription in many immune cell types, its role in neutrophils remains poorly understood. Here, we report that PKM2 regulates ROS production and microbial killing by neutrophils. Zymosan-activated neutrophils showed increased cytoplasmic expression of PKM2. Pharmacological inhibition or genetic deficiency of PKM2 in neutrophils reduced ROS production and Staphylococcus aureus killing in vitro. In addition, this also resulted in phosphoenolpyruvate (PEP) accumulation and decreased dihydroxyacetone phosphate (DHAP) production, which is required for de novo synthesis of diacylglycerol (DAG) from glycolysis. In vivo, PKM2 deficiency in myeloid cells impaired the control of infection with Staphylococcus aureus. Our results fill the gap in the current knowledge of the importance of lower glycolysis for ROS production in neutrophils, highlighting the role of PKM2 in regulating the DHAP and DAG synthesis to promote ROS production in neutrophils.


Asunto(s)
Neutrófilos , Piruvato Quinasa , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neutrófilos/metabolismo , Fosforilación , Glucólisis
11.
Elife ; 122023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37254842

RESUMEN

Resident macrophages are distributed across all tissues and are highly heterogeneous due to adaptation to different tissue-specific environments. The resident macrophages of the sensory ganglia (sensory neuron-associated macrophages, sNAMs) are in close contact with the cell body of primary sensory neurons and might play physiological and pathophysiological roles. After peripheral nerve injury, there is an increase in the population of macrophages in the sensory ganglia, which have been implicated in different conditions, including neuropathic pain development. However, it is still under debate whether macrophage accumulation in the sensory ganglia after peripheral nerve injury is due to the local proliferation of resident macrophages or a result of blood monocyte infiltration. Here, we confirmed that the number of macrophages increased in the sensory ganglia after the spared nerve injury (SNI) model in mice. Using different approaches, we found that the increase in the number of macrophages in the sensory ganglia after SNI is a consequence of the proliferation of resident CX3CR1+ macrophages, which participate in the development of neuropathic pain, but not due to infiltration of peripheral blood monocytes. These proliferating macrophages are the source of pro-inflammatory cytokines such as TNF and IL-1b. In addition, we found that CX3CR1 signaling is involved in the sNAMs proliferation and neuropathic pain development after peripheral nerve injury. In summary, these results indicated that peripheral nerve injury leads to sNAMs proliferation in the sensory ganglia in a CX3CR1-dependent manner accounting for neuropathic pain development. In conclusion, sNAMs proliferation could be modulated to change pathophysiological conditions such as chronic neuropathic pain.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Ratones , Animales , Traumatismos de los Nervios Periféricos/complicaciones , Ganglios Espinales , Macrófagos , Ganglios Sensoriales , Células Receptoras Sensoriales , Proliferación Celular , Hiperalgesia
12.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37104043

RESUMEN

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Asunto(s)
COVID-19 , Trampas Extracelulares , Humanos , Animales , Ratones , COVID-19/genética , COVID-19/patología , Trampas Extracelulares/metabolismo , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/metabolismo , Pulmón/patología , Complemento C5a/genética , Complemento C5a/metabolismo
13.
Respir Res ; 24(1): 66, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864506

RESUMEN

BACKGROUND: COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. METHODS: Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. SARS-CoV-2-infected K18-hACE2 mice were performed for clinical sickness scores and lung pathology. Moreover, the levels of NETs were assessed and lung injuries were by histopathology and TUNEL assay. Finally, the injury in the heart and kidney was assessed by histopathology and biochemical-specific markers. RESULTS: DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potentially deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. CONCLUSIONS: Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Trampas Extracelulares , Animales , Humanos , Ratones , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Neutrófilos , Desoxirribonucleasa I/farmacología , Desoxirribonucleasa I/uso terapéutico
14.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36917195

RESUMEN

Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.


Asunto(s)
Trampas Extracelulares , Sepsis , Ratones , Animales , Fibrinolisina , Plasminógeno , Trampas Extracelulares/metabolismo , Interleucina-6/metabolismo , Inflamación/metabolismo , Sepsis/metabolismo , Fibrina/metabolismo
15.
J Invest Dermatol ; 143(9): 1678-1688.e8, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36921684

RESUMEN

Psoriasis is a chronic inflammatory skin disorder driven by the IL-23/type 3 immune response. However, molecular mechanisms sustaining the chronicity of inflammation and psoriatic lesions remain elusive. Combining systematic analyses of several transcriptomic datasets, we delineated gene signatures across human psoriatic skin, identifying S100A9 as one of the most up-regulated genes, which was confirmed in lesioned skin from patients with psoriasis and preclinical psoriasiform skin inflammation models. Genetic ablation or pharmacologic inhibition of S100A9 alleviated Aldara-induced skin inflammation. By single-cell mapping of human psoriatic skin and bone marrow chimeric mice experiments, we identified keratinocytes as the major source of S100A9. Mechanistically, S100A9 induced IL-23 production by dendritic cells, driving the IL-23/type 3 immunity in psoriasiform skin inflammation. In addition, the cutaneous IL-23/IL-17 axis induced epidermal S100A9 expression in human and experimental psoriasis. Thus, we showed an autoregulatory circuit between keratinocyte-derived S100A9 and IL-23/type 3 immunity during psoriasiform inflammation, identifying a crucial function of S100A9 in the chronification of psoriasis.


Asunto(s)
Psoriasis , Humanos , Animales , Ratones , Piel/patología , Queratinocitos/metabolismo , Inflamación/patología , Calgranulina B/genética , Interleucina-23/genética , Interleucina-23/metabolismo , Modelos Animales de Enfermedad
16.
Cell Rep ; 42(1): 112035, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36848232

RESUMEN

Invariant natural killer T (iNKT) cells are a distinct population of lymphocytes characterized by their reactivity to glycolipids presented by CD1d. iNKT cells are found throughout the body, and little is known about their tissue-specific metabolic regulation. Here, we show that splenic and hepatic iNKT cells are metabolically comparable and rely on glycolytic metabolism to support their activation. Deletion of the pyruvate kinase M2 (Pkm2) gene in splenic and hepatic iNKT cells impairs their response to specific stimulation and their ability to mitigate acute liver injury. In contrast, adipose tissue (AT) iNKT cells exhibit a distinctive immunometabolic profile, with AMP-activated protein kinase (AMPK) being necessary for their function. AMPK deficiency impairs AT-iNKT physiology, blocking their capacity to maintain AT homeostasis and their ability to regulate AT inflammation during obesity. Our work deepens our understanding on the tissue-specific immunometabolic regulation of iNKT cells, which directly impacts the course of liver injury and obesity-induced inflammation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Células T Asesinas Naturales , Inflamación , Hígado , Metaboloma , Obesidad , Animales , Ratones
17.
Immunity ; 56(2): 232-234, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36792568

RESUMEN

Pregnancy predisposes women to develop severe sepsis. However, the mechanisms regulating this remain unclear. In this issue of Immunity, Chen et al. describe the critical role of gut dysbiosis during pregnancy in driving excessive macrophage pyroptosis, increasing susceptibility to sepsis.


Asunto(s)
Microbioma Gastrointestinal , Sepsis , Embarazo , Humanos , Femenino , Microbioma Gastrointestinal/fisiología , Disbiosis
18.
Inflamm Res ; 72(2): 203-215, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36401631

RESUMEN

OBJECTIVE: This study aimed to investigate the effects of FK506 on experimental sepsis immunopathology. It investigated the effect of FK506 on leukocyte recruitment to the site of infection, systemic cytokine production, and organ injury in mice with sepsis. METHODS: Using a murine cecal ligation and puncture (CLP) peritonitis model, the experiments were performed with wild-type (WT) mice and mice deficient in the gene Nfat1 (Nfat1-/-) in the C57BL/6 background. Animals were treated with 2.0 mg/kg of FK506, subcutaneously, 1 h before the sepsis model, twice a day (12 h/12 h). The number of bacteria colony forming units (CFU) was manually counted. The number of neutrophils in the lungs was estimated by the myeloperoxidase (MPO) assay. The expression of CXCR2 in neutrophils was determined using flow cytometry analysis. The expression of inflammatory cytokines in macrophage was determined using ELISA. The direct effect of FK506 on CXCR2 internalization was evaluated using HEK-293T cells after CXCL2 stimulation by the BRET method. RESULTS: FK506 treatment potentiated the failure of neutrophil migration into the peritoneal cavity, resulting in bacteremia and an exacerbated systemic inflammatory response, which led to higher organ damage and mortality rates. Failed neutrophil migration was associated with elevated CXCL2 chemokine plasma levels and lower expression of the CXCR2 receptor on circulating neutrophils compared with non-treated CLP-induced septic mice. FK506 did not directly affect CXCL2-induced CXCR2 internalization by transfected HEK-293 cells or mice neutrophils, despite increasing CXCL2 release by LPS-treated macrophages. Finally, the CLP-induced response of Nfat1-/- mice was similar to those observed in the Nfat1+/+ genotype, suggesting that the FK506 effect is not dependent on the NFAT1 pathway. CONCLUSION: Our data indicate that the increased susceptibility to infection of FK506-treated mice is associated with failed neutrophil migration due to the reduced membrane availability of CXCR2 receptors in response to exacerbated levels of circulating CXCL2.


Asunto(s)
Neutrófilos , Sepsis , Humanos , Ratones , Animales , Tacrolimus/farmacología , Tacrolimus/uso terapéutico , Células HEK293 , Ratones Endogámicos C57BL , Sepsis/metabolismo , Infiltración Neutrófila
19.
Arch Dermatol Res ; 315(3): 481-490, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36042041

RESUMEN

Transcriptional factor B lymphocyte-induced maturation protein 1 (Blimp-1) is pivotally implicated in T helper 17 (Th17) cell differentiation. This study investigated expression of the Blimp-1 protein, positive regulatory domain 1 (PRDM1), and cytokine genes in psoriasis (PsO). Affected (AS-PsO) and non-affected skin (nAS-PsO) samples were used to assess gene and protein expressions by reverse transcription-quantitative PCR (RT-qPCR), and immunostaining and confocal microscopy, respectively; the normalised public transcriptomic data permitted differential gene expression analyses. On RT-qPCR, PRDM1 and IL17A transcripts showed higher expression in AS-PsO than in nAS-PsO (n = 34) (p < 0.001; p < 0.0001, respectively). Confocal microscopy showed Blimp-1 protein expression in epidermal layer keratinocytes in AS-PsO, but not in nAS-PsO. Bioinformatic analysis of the transcriptomic dataset GSE13355 corroborated the increased PRDM1, signal transducer and activator of transcription 3 (STAT3), IL12B, TNF, IL17A, IL6, IL1B, IL22, and IL10 gene expression in AS-PsO, when compared to normal skin and nAS-PsO (p < 0.001). PRDM1 expression correlated positively (p < 0.0001) with that of IL17A (r = 0.7), IL1B (r = 0.67), IL12B (r = 0.6), IL6 (r = 0.59), IL22 (r = 0.53), IL23A (r = 0.47), IL21 (r = 0.47), IL27 (r = 0.34), IL23R (r = 0.32), S100 calcium binding protein A9 (r = 0.63), and lipocalin 2 (r = 0.50), and negatively with that of TGFB1 (r = - 0.28) and RORC (r = - 0.60). Blimp-1 may be critical in the pathogenesis of PsO dysregulation involving the Th17 inflammatory pathway. This knowledge may accelerate the development of new treatments.


Asunto(s)
Interleucina-6 , Psoriasis , Humanos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Queratinocitos , Psoriasis/genética , Psoriasis/patología , Piel , Células Th17/patología
20.
Cell Rep ; 41(13): 111897, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36577385

RESUMEN

Psoriasis is an inflammatory skin disease characterized by keratinocyte proliferation and inflammatory cell infiltration induced by IL-17. However, the molecular mechanism through which IL-17 signaling in keratinocytes triggers skin inflammation remains not fully understood. Pyruvate kinase M2 (PKM2), a glycolytic enzyme, has been shown to have non-metabolic functions. Here, we report that PKM2 mediates IL-17A signaling in keratinocytes triggering skin psoriatic inflammation. We find high expression of PKM2 in the epidermis of psoriatic patients and mice undergoing psoriasis models. Specific depletion of PKM2 in keratinocytes attenuates the development of experimental psoriasis by reducing the production of pro-inflammatory mediators. Mechanistically, PKM2 forms a complex with Act1 and TRAF6 regulating NF-κB transcriptional signaling downstream of the IL-17 receptor. As IL-17 also induces PKM2 expression in keratinocytes, our findings reveal a sustained signaling circuit critical for the psoriasis-driving effects of IL-17A, suggesting that PKM2 is a potential therapeutic target for psoriasis.


Asunto(s)
Dermatitis , Psoriasis , Ratones , Animales , Interleucina-17/metabolismo , Piruvato Quinasa/metabolismo , Queratinocitos/metabolismo , Psoriasis/inducido químicamente , Inflamación/metabolismo , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...