Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 19(4): 1149-1182, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38302732

RESUMEN

Human primordial germ cells (hPGCs), the precursors of eggs and sperm, start their complex development shortly after specification and during their migration to the primitive gonads. Here, we describe protocols for specifying hPGC-like cells (hPGCLCs) from resetting precursors and progressing them with the support of human hindgut organoids. Resetting hPGCLCs (rhPGCLCs) are specified from human embryonic stem cells (hESCs) transitioning from the primed into the naive state of pluripotency. Hindgut organoids are also derived from hESCs after a sequential differentiation into a posterior endoderm/hindgut fate. Both rhPGCLCs and hindgut organoids are combined and co-cultured for 25 d. The entire procedure takes ~1.5 months and can be successfully implemented by a doctoral or graduate student with basic skills and experience in hESC cultures. The co-culture system supports the progression of rhPGCLCs at a developmental timing analogous to that observed in vivo. Compared with previously developed hPGCLC progression protocols, which depend on co-cultures with mouse embryonic gonadal tissue, our co-culture system represents a developmentally relevant model closer to the environment that hPGCs first encounter after specification. Together with the potential for investigations of events during hPGC specification and early development, these protocols provide a practical approach to designing efficient models for in vitro gametogenesis. Notably, the rhPGCLC-hindgut co-culture system can also be adapted to study failings in hPGC migration, which are associated with the etiology of some forms of infertility and germ cell tumors.


Asunto(s)
Endodermo , Semen , Humanos , Masculino , Animales , Ratones , Células Germinativas , Diferenciación Celular , Organoides
2.
Cell Rep ; 42(1): 111907, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640324

RESUMEN

Human primordial germ cells (hPGCs), the precursors of sperm and eggs, are specified during weeks 2-3 after fertilization. Few studies on ex vivo and in vitro cultured human embryos reported plausible hPGCs on embryonic day (E) 12-13 and in an E16-17 gastrulating embryo. In vitro, hPGC-like cells (hPGCLCs) can be specified from the intermediary pluripotent stage or peri-gastrulation precursors. Here, we explore the broad spectrum of hPGCLC precursors and how different precursors impact hPGCLC development. We show that resetting precursors can give rise to hPGCLCs (rhPGCLCs) in response to BMP. Strikingly, rhPGCLCs co-cultured with human hindgut organoids progress at a pace reminiscent of in vivo hPGC development, unlike those derived from peri-gastrulation precursors. Moreover, rhPGCLC specification depends on both EOMES and TBXT, not just on EOMES as for peri-gastrulation hPGCLCs. Importantly, our study provides the foundation for developing efficient in vitro models of human gametogenesis.


Asunto(s)
Células Germinativas , Semen , Humanos , Masculino , Diferenciación Celular , Embrión de Mamíferos , Organoides
3.
Nature ; 607(7919): 540-547, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794482

RESUMEN

Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.


Asunto(s)
Linaje de la Célula , Células Germinativas , Ovario , Diferenciación Sexual , Análisis de la Célula Individual , Testículo , Animales , Cromatina/genética , Cromatina/metabolismo , Femenino , Células Germinativas/citología , Células Germinativas/metabolismo , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Humanos , Inmunoglobulinas , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana , Proteínas de la Membrana , Ratones , Microscopía Fluorescente , Ovario/citología , Ovario/embriología , Factor de Transcripción PAX8 , Embarazo , Primer Trimestre del Embarazo , Segundo Trimestre del Embarazo , Receptores Inmunológicos , Diferenciación Sexual/genética , Testículo/citología , Testículo/embriología , Transcriptoma
4.
BMC Biol ; 19(1): 212, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556114

RESUMEN

BACKGROUND: Advances in three-dimensional culture technologies have led to progression in systems used to model the gonadal microenvironment in vitro. Despite demonstrating basic functionality, tissue organisation is often limited. We have previously detailed a three-dimensional culture model termed the three-layer gradient system to generate rat testicular organoids in vitro. Here we extend the model to human first-trimester embryonic gonadal tissue. RESULTS: Testicular cell suspensions reorganised into testis-like organoids with distinct seminiferous-like cords situated within an interstitial environment after 7 days. In contrast, tissue reorganisation failed to occur when mesonephros, which promotes testicular development in vivo, was included in the tissue digest. Organoids generated from dissociated female gonad cell suspensions formed loosely organised cords after 7 days. In addition to displaying testis-specific architecture, testis-like organoids demonstrated evidence of somatic cell differentiation. Within the 3-LGS, we observed the onset of AMH expression in the cytoplasm of SOX9-positive Sertoli cells within reorganised testicular cords. Leydig cell differentiation and onset of steroidogenic capacity was also revealed in the 3-LGS through the expression of key steroidogenic enzymes StAR and CYP17A1 within the interstitial compartment. While the 3-LGS generates a somatic cell environment capable of supporting germ cell survival in ovarian organoids germ cell loss was observed in testicular organoids. CONCLUSION: The 3-LGS can be used to generate organised whole gonadal organoids within 7 days. The 3-LGS brings a new opportunity to explore gonadal organogenesis and contributes to the development of more complex in vitro models in the field of developmental and regenerative medicine.


Asunto(s)
Células de Sertoli , Testículo , Animales , Colágeno , Combinación de Medicamentos , Femenino , Gónadas , Humanos , Laminina , Masculino , Proteoglicanos , Ratas , Suspensiones
5.
Cells ; 10(2)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513766

RESUMEN

Fertility preservation for male childhood cancer survivors not yet capable of producing mature spermatozoa, relies on experimental approaches such as testicular explant culture. Although the first steps in somatic maturation can be observed in human testicular explant cultures, germ cell depletion is a common obstacle. Hence, understanding the spermatogonial stem cell (SSC) niche environment and in particular, specific components such as the seminiferous basement membrane (BM) will allow progression of testicular explant cultures. Here, we revealed that the seminiferous BM is established from 6 weeks post conception with the expression of laminin alpha 1 (LAMA 1) and type IV collagen, which persist as key components throughout development. With prepubertal testicular explant culture we found that seminiferous LAMA 1 expression is disrupted and depleted with culture time correlating with germ cell loss. These findings highlight the importance of LAMA 1 for the human SSC niche and its sensitivity to culture conditions.


Asunto(s)
Preservación de la Fertilidad , Laminina/metabolismo , Pubertad/metabolismo , Espermatogonias/metabolismo , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Fibronectinas/metabolismo , Humanos , Masculino , Modelos Biológicos , Túbulos Seminíferos/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Transcripción Genética
6.
Nat Protoc ; 13(2): 248-259, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29300391

RESUMEN

We have recently developed a 3D culture system that allows the reorganization of rat primary testicular cells into organoids with a functional blood-testis barrier, as well as the establishment and maintenance of germ cells. The innovative aspect of our model, the three-layer gradient system (3-LGS), comprises cells combined with Matrigel placed between two layers of Matrigel without cells, which creates a gradient of cells and allows the reorganization of testicular cells into organized structures after 5-7 d in culture. This reorganization is not observed when testicular cells are suspended in only one layer of Matrigel, the methodology used in the majority of the protocols for generating organoids. The model can be applied to follow and quantify cell migration during testicular organoid formation, and to explore the role of growth factors and the toxic effects of drugs and environmental contaminants on germ cell maintenance and blood-testis barrier integrity. The 3-LGS is a robust and reproducible method that requires a small volume of Matrigel and a low number of cells (16 µl and 132,000 cells, respectively), enabling and facilitating high-throughput analysis of germ-to-somatic cell associations in vitro.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Organoides/trasplante , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Colágeno , Combinación de Medicamentos , Laminina , Masculino , Proteoglicanos , Ratas , Espermatogénesis/fisiología , Espermatogonias/crecimiento & desarrollo , Espermatogonias/fisiología , Testículo
7.
Hum Reprod Update ; 24(2): 176-191, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29281008

RESUMEN

BACKGROUND: In recent decades, a broad range of strategies have been applied to model the testicular microenvironment in vitro. These models have been utilized to study testicular physiology and development. However, a system that allows investigations into testicular organogenesis and its impact in the spermatogonial stem-cell (SSC) niche in vitro has not been developed yet. Recently, the creation of tissue-specific organ-like structures called organoids has resurged, helping researchers to answer scientific questions that previous in vitro models could not help to elucidate. So far, a small number of publications have concerned the generation of testicular organoids and their application in the field of reproductive medicine and biology. OBJECTIVE AND RATIONALE: Here, we aim to elucidate whether testicular organoids might be useful in answering current scientific questions about the regulation and function of the SSC niche as well as germ cell proliferation and differentiation, and whether or not the existing in vitro models are already sufficient to address them. Moreover, we would like to discuss how an organoid system can be a better solution to address these prominent scientific problems in our field, by the creation of a rationale parallel to those in other areas where organoid systems have been successfully utilized. SEARCH METHODS: We comprehensively reviewed publications regarding testicular organoids and the methods that most closely led to the formation of these organ-like structures in vitro by searching for the following terms in both PubMed and the Web of Science database: testicular organoid, seminiferous tubule 3D culture, Sertoli cell 3D culture, testicular cord formation in vitro, testicular morphogenesis in vitro, germ cell 3D culture, in vitro spermatogenesis, testicular de novo morphogenesis, seminiferous tubule de novo morphogenesis, seminiferous tubule-like structures, testicular in vitro model and male germ cell niche in vitro, with no restrictions to any publishing year. The inclusion criteria were based on the relation with the main topic (i.e. testicular organoids, testicular- and seminiferous-like structures as in vitro models), methodology applied (i.e. in vitro culture, culture dimensions (2D, 3D), testicular cell suspension or fragments) and outcome of interest (i.e. organization in vitro). Publications about grafting of testicular tissue, germ-cell transplantation and female germ-cell culture were excluded. OUTCOMES: The application of organoid systems is making its first steps in the field of reproductive medicine and biology. A restricted number of publications have reported and characterized testicular organoids and even fewer have denominated such structures by this method. However, we detected that a clear improvement in testicular cell reorganization is recognized when 3D culture conditions are utilized instead of 2D conditions. Depending on the scientific question, testicular organoids might offer a more appropriate in vitro model to investigate testicular development and physiology because of the easy manipulation of cell suspensions (inclusion or exclusion of a specific cell population), the fast reorganization of these structures and the controlled in vitro conditions, to the same extent as with other organoid strategies reported in other fields. WIDER IMPLICATIONS: By way of appropriate research questions, we might use testicular organoids to deepen our basic understanding of testicular development and the SSC niche, leading to new methodologies for male infertility treatment.

8.
Biomaterials ; 130: 76-89, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28364632

RESUMEN

A system that models the testicular microenvironment and spermatogonial stem-cell (SSC) niche in vitro has not been produced yet. Here, we developed and characterized a novel three-dimensional multilayer model, the Three-Layer Gradient System (3-LGS), which permits the generation of rat testicular organoids with a functional blood-testis barrier (BTB) and germ cell establishment and proliferation. The model is unique as regards the formation of cellular organizations that more closely represent the in vivo germ-to-somatic cell associations in vitro. Moreover, we also verified the roles of retinoic acid (RA), IL-1α, TNFα and RA inhibitors in germ cell maintenance and BTB organization in vitro. Treatment with RA was beneficial for germ cell maintenance, while IL-1α and TNFα were observed to impair the formation of testicular organoids and germ cell maintenance. Taking in account our characterization and validation results, we propose the 3-LGS as a new platform to investigate the SSC niche in vitro and to search for novel unknown factors involved in germ cell proliferation and differentiation. Moreover, we suggest that this model can be used in other scientific fields to study organogenesis and development by the generation of organoids.


Asunto(s)
Organoides/citología , Testículo/citología , Ingeniería de Tejidos/métodos , Animales , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/metabolismo , Diferenciación Celular/efectos de los fármacos , Interleucina-1alfa/farmacología , Masculino , Organoides/efectos de los fármacos , Ratas Sprague-Dawley , Túbulos Seminíferos/crecimiento & desarrollo , Células de Sertoli/citología , Células de Sertoli/efectos de los fármacos , Espermatozoides/citología , Espermatozoides/efectos de los fármacos , Tretinoina/farmacología , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...