Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Biol ; 124(1): 73-81, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31892379

RESUMEN

The surface of plants forms a defense barrier that directly inhibits the first point of contact of microorganisms with the host. To understand this defense mechanism in Moniliophthora perniciosa interaction with Theobroma cacao cv Catongo, the aim of this study was to compare the changes in protein expression in basidiospores of the fungus M. perniciosa in response the leaf water washes (LWW) of two contrasting cocoa varieties for resistance to witches' broom disease. A total of 8.1 × 108 basidiospores were used for each treatment containing washed leaf material. Germinated basidiospores in the absence of LWW were used as control. The proteomic analysis was performed by the 2D-PAGE technique combined with mass spectrometry (MS). Protein extraction was based on the SDS-dense method followed by sonication for cell disruption and phenol extraction. Sixty-four proteins had accumulation of variation when compared to the control (no LWW). Proteins were identified associated with energy (ATP synthase) and protein (BiP) metabolism, whose accumulation was reduced by basidiospores germinated in leaf wash from Catongo cocoa. The reduction in ATP synthase of the basidiospores germinated the Catongo LWW suggests a shift from aerobic to fermentative metabolism of the fungus in response to components of the LWW. Furthermore, proteins involved in virulence were identified along with fungal resistance to polyketide cyclase, glycoside hydrolase, multidrug transporter protein (SFM) and proteins related to oxidative stress and fermentation, such as catalase A and alcohol dehydrogenase (ADH). The data showed an effect of cocoa phylloplane substances on the germination of fungal basidiospores through differences in protein expression patterns in the presence of LWW of the CCN51 and Catongo genotypes. These results may reveal mechanisms of resistance, host susceptibility and pathogen virulence.


Asunto(s)
Agaricales/fisiología , Cacao/microbiología , Proteínas Fúngicas/metabolismo , Hojas de la Planta/microbiología , Agaricales/metabolismo , Agaricales/patogenicidad , Cacao/química , Resistencia a la Enfermedad , Proteínas Fúngicas/genética , Interacciones Microbiota-Huesped , Enfermedades de las Plantas/microbiología , Hojas de la Planta/química , Proteómica , Solubilidad , Esporas Fúngicas/metabolismo , Esporas Fúngicas/fisiología
2.
BMC Microbiol ; 17(1): 176, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28818052

RESUMEN

BACKGROUND: Moniliophthora perniciosa is a phytopathogenic fungus responsible for witches' broom disease of cacao trees (Theobroma cacao L.). Understanding the molecular events during germination of the pathogen may enable the development of strategies for disease control in these economically important plants. In this study, we determined a comparative proteomic profile of M. perniciosa basidiospores during germination by two-dimensional SDS-PAGE and mass spectrometry. RESULTS: A total of 316 proteins were identified. Molecular changes during the development of the germinative tube were identified by a hierarchical clustering analysis based on the differential accumulation of proteins. Proteins associated with fungal filamentation, such as septin and kinesin, were detected only 4 h after germination (hag). A transcription factor related to biosynthesis of the secondary metabolite fumagillin, which can form hybrids with polyketides, was induced 2 hag, and polyketide synthase was observed 4 hag. The accumulation of ATP synthase, binding immunoglobulin protein (BiP), and catalase was validated by western blotting. CONCLUSIONS: In this study, we showed variations in protein expression during the early germination stages of fungus M. perniciosa. Proteins associated with fungal filamentation, and consequently with virulence, were detected in basidiospores 4 hag., for example, septin and kinesin. We discuss these results and propose a model of the germination of fungus M. perniciosa. This research can help elucidate the mechanisms underlying basic processes of host invasion and to develop strategies for control of the disease.


Asunto(s)
Agaricales/genética , Agaricales/metabolismo , Cacao/microbiología , Cytisus/metabolismo , Germinación/genética , Enfermedades de las Plantas/microbiología , Proteómica , Agaricales/patogenicidad , Catalasa/metabolismo , Análisis por Conglomerados , Ciclohexanos/metabolismo , Cytisus/microbiología , Ácidos Grasos Insaturados/metabolismo , Proteínas Fúngicas/genética , Germinación/fisiología , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Metabolismo Secundario , Alineación de Secuencia , Sesquiterpenos/metabolismo , Esporas Fúngicas/metabolismo , Factores de Transcripción , Virulencia
3.
BMC Microbiol ; 16(1): 120, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27342316

RESUMEN

BACKGROUND: Witches' broom, a disease caused by the basidiomycete Moniliophthora perniciosa, is considered to be the most important disease of the cocoa crop in Bahia, an area in the Brazilian Amazon, and also in the other countries where it is found. M. perniciosa germ tubes may penetrate into the host through intact or natural openings in the cuticle surface, in epidermis cell junctions, at the base of trichomes, or through the stomata. Despite its relevance to the fungal life cycle, basidiospore biology has not been extensively investigated. In this study, our goal was to optimize techniques for producing basidiospores for protein extraction, and to produce the first proteomics analysis map of ungerminated basidiospores. We then presented a protein interaction network by using Ustilago maydis as a model. RESULTS: The average pileus area ranged from 17.35 to 211.24 mm(2). The minimum and maximum productivity were 23,200 and 6,666,667 basidiospores per basidiome, respectively. The protein yield in micrograms per million basidiospores were approximately 0.161; 2.307, and 3.582 for germination times of 0, 2, and 4 h after germination, respectively. A total of 178 proteins were identified through mass spectrometry. These proteins were classified according to their molecular function and their involvement in biological processes such as cellular energy production, oxidative metabolism, stress, protein synthesis, and protein folding. Furthermore, to better understand the expression pattern, signaling, and interaction events of spore proteins, we presented an interaction network using orthologous proteins from Ustilago maydis as a model. Most of the orthologous proteins that were identified in this study were not clustered in the network, but several of them play a very important role in hypha development and branching. CONCLUSIONS: The quantities of basidiospores 7 × 10(9); 5.2 × 10(8), and 6.7 × 10(8) were sufficient to obtain enough protein mass for the three 2D-PAGE replicates, for the 0, 2, and 4 h-treatments, respectively. The protein extraction method that is based on sedimentation, followed by sonication with SDS-dense buffer, and phenolic extraction, which was utilized in this study, was effective, presenting a satisfactory resolution and reproducibility for M. perniciosa basidiospores. This report constitutes the first comprehensive study of protein expression during the ungerminated stage of the M. perniciosa basidiospore. Identification of the spots observed in the reference gel enabled us to know the main molecular interactions involved in the initial metabolic processes of fungal development.


Asunto(s)
Agaricales/metabolismo , Proteínas Fúngicas/metabolismo , Esporas Fúngicas/metabolismo , Agaricales/química , Agaricales/genética , Agaricales/crecimiento & desarrollo , Electroforesis en Gel Bidimensional , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Unión Proteica , Mapas de Interacción de Proteínas , Esporas Fúngicas/química , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
4.
PLoS One ; 10(12): e0144440, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26641247

RESUMEN

The interaction amongst papain-like cysteine-proteases (PLCP) and their substrates and inhibitors, such as cystatins, can be perceived as part of the molecular battlefield in plant-pathogen interaction. In cacao, four cystatins were identified and characterized by our group. We identified 448 proteases in cacao genome, whereof 134 were cysteine-proteases. We expressed in Escherichia coli a PLCP from cacao, named TcCYSPR04. Immunoblottings with anti-TcCYSPR04 exhibited protein increases during leaf development. Additional isoforms of TcCYSPR04 appeared in senescent leaves and cacao tissues infected by Moniliophthora perniciosa during the transition from the biotrophic to the saprophytic phase. TcCYSPR04 was induced in the apoplastic fluid of Catongo and TSH1188 cacao genotypes, susceptible and resistant to M. perniciosa, respectively, but greater intensity and additional isoforms were observed in TSH1188. The fungal protein MpNEP induced PLCP isoform expression in tobacco leaves, according to the cross reaction with anti-TcCYSPR04. Several protein isoforms were detected at 72 hours after treatment with MpNEP. We captured an active PLCP from cacao tissues, using a recombinant cacao cystatin immobilized in CNBr-Sepharose. Mass spectrometry showed that this protein corresponds to TcCYSPR04. A homology modeling was obtained for both proteins. In order to become active, TcCYSPR04 needs to lose its inhibitory domain. Molecular docking showed the physical-chemical complementarities of the interaction between the cacao enzyme and its inhibitor. We propose that TcCYSPR04 and its interactions with cacao cystatins are involved in the senescence and necrosis events related to witches' broom symptoms. This molecular interaction may be the target for future interventions to control witches' broom disease.


Asunto(s)
Cacao/metabolismo , Cistatinas/metabolismo , Proteasas de Cisteína/metabolismo , Necrosis , Papaína/química , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cacao/genética , Cacao/crecimiento & desarrollo , Proteasas de Cisteína/química , Proteasas de Cisteína/genética , Genoma de Planta , Immunoblotting , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
PLoS One ; 9(2): e88422, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24558388

RESUMEN

Lectins are carbohydrate-binding proteins that recognize and modulate physiological activities and have been used as a toll for detection and identification of biomolecules, and therapy of diseases. In this study we have isolated a lectin present in the latex of Euphorbia tirucalli, and named it Eutirucallin. The latex protein extract was subjected to ion exchange chromatography and showed two peaks with haemagglutinating activity. Polypeptides of 32 kDa protein extract strongly interacted with immobilized galactose (α-lactose > D-N-acetylgalactosamine). The Eutirucallin was obtained with a yield of 5.6% using the α-lactose column. The lectin domain has 32 kDa subunits and at least two of which are joined by disulfide bridges. The agglutinating capacity for human erythrocytes A(+), B(+) and O(+) is inhibited by D-galactose. The haemagglutinating activity of Eutirucallin was independent of Ca(2+) and maintained until the temperature of 55°C. Eutirucallin presented biological activities such as neutrophils recruitment and cytokine prodution by macrophages. The analysis of the trypsin-digested Eutirucallin by ms/ms in ESI-Q-TOFF resulted in nine peptides similar to type 2 ribosome-inactivating protein (type-2 RIP). It's partial sequence showed a similarity of 67.4 - 83.1% for the lectin domain of type-2 RIP [Ricin and Abrin (83.1%), Viscumin, Ebulin, Pulchellin, Cinnamomin, Volkensin and type-2 RIP Iris hollandica]. Our data suggest that Eutirucallin is a new member of type 2 ribosome-inactivating protein and presents biotechnological potential.


Asunto(s)
Euphorbia/química , Inflamación/inducido químicamente , Látex/química , Extractos Vegetales/química , Lectinas de Plantas/química , Acetilgalactosamina/química , Calcio/química , Disulfuros/química , Eritrocitos/efectos de los fármacos , Galactosa/química , Humanos , Lactosa/química , Lectinas/química , Macrófagos/efectos de los fármacos , Péptidos/química , Estructura Terciaria de Proteína , Ribosomas/química , Espectrometría de Masa por Ionización de Electrospray , Temperatura
6.
Planta ; 232(6): 1485-97, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20859638

RESUMEN

Three cystatin open reading frames named TcCys1, TcCys2 and TcCys3 were identified in cDNA libraries from compatible interactions between Theobroma cacao (cacao) and Moniliophthora perniciosa. In addition, an ORF named TcCys4 was identified in the cDNA library of the incompatible interaction. The cDNAs encoded conceptual proteins with 209, 127, 124, and 205 amino acid residues, with a deduced molecular weight of 24.3, 14.1, 14.3 and 22.8 kDa, respectively. His-tagged recombinant proteins were purified from Escherichia coli expression, and showed inhibitory activities against M. perniciosa. The four recombinant cystatins exhibited K(i) values against papain in the range of 152-221 nM. Recombinant TcCYS3 and TcCYS4 immobilized in CNBr-Sepharose were efficient to capture M. perniciosa proteases from culture media. Polyclonal antibodies raised against the recombinant TcCYS4 detected that the endogenous protein was more abundant in young cacao tissues, when compared with mature tissues. A ~85 kDa cacao multicystatin induced by M. perniciosa inoculation, MpNEP (necrosis and ethylene-inducing protein) and M. perniciosa culture supernatant infiltration were detected by anti-TcCYS4 antibodies in cacao young tissues. A direct role of the cacao cystatins in the defense against this phytopathogen was proposed, as well as its involvement in the development of symptoms of programmed cell death.


Asunto(s)
Cacao/química , Muerte Celular/efectos de los fármacos , Cistatinas/farmacología , Micelio/efectos de los fármacos , Secuencia de Bases , Cacao/genética , Cartilla de ADN , ADN Complementario , Micelio/crecimiento & desarrollo , Sistemas de Lectura Abierta , Filogenia
7.
Electrophoresis ; 29(11): 2391-401, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18435495

RESUMEN

Preparation of high-quality proteins from cacao vegetative organs is difficult due to very high endogenous levels of polysaccharides and polyphenols. In order to establish a routine procedure for the application of proteomic and biochemical analysis to cacao tissues, three new protocols were developed; one for apoplastic washing fluid (AWF) extraction, and two for protein extraction--under denaturing and nondenaturing conditions. The first described method allows a quick and easy collection of AWF--using infiltration-centrifugation procedure--that is representative of its composition in intact leaves according to the smaller symplastic contamination detected by the use of the hexose phosphate isomerase marker. Protein extraction under denaturing conditions for 2-DE was remarkably improved by the combination of chemically and physically modified processes including phenol, SDS dense buffer and sonication steps. With this protocol, high-quality proteins from cacao leaves and meristems were isolated, and for the first time well-resolved 1-DE and 2-DE protein patterns of cacao vegetative organs are shown. It also appears that sonication associated with polysaccharide precipitation using tert-butanol was a crucial step for the nondenaturing protein extraction and subsequent enzymatic activity detection. It is expected that the protocols described here could help to develop high-level proteomic and biochemical studies in cacao also being applicable to other recalcitrant plant tissues.


Asunto(s)
Cacao/química , Proteínas de Plantas/análisis , Proteoma/análisis , Agaricales/patogenicidad , Electroforesis en Gel de Poliacrilamida , Meristema/química , Enfermedades de las Plantas , Hojas de la Planta/química , Proteínas de Plantas/aislamiento & purificación , Desnaturalización Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...