Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 120(21): 211804, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883176

RESUMEN

The Majorana Demonstrator is an ultralow-background experiment searching for neutrinoless double-beta decay in ^{76}Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly ionizing particles with an electrical charge less than e are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the Majorana Demonstrator by searching for multiple-detector events with individual-detector energy depositions down to 1 keV. This search is background-free, and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as e/1000.

2.
Phys Rev Lett ; 120(13): 132502, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694188

RESUMEN

The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-ß decay in ^{76}Ge. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in ^{76}Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Q_{ßß} and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×10^{25} yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0_{-2.5}^{+3.1} counts/(FWHM t yr).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...