Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0297890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38470889

RESUMEN

In Industry 4.0, the adoption of new technology has played a major role in the transportation sector, especially in the electric vehicles (EVs) domain. Nevertheless, consumer attitudes towards EVs have been difficult to gauge but researchers have tried to solve this puzzle. The prior literature indicates that individual attitudes and technology factors are vital to understanding users' adoption of EVs. Thus, the main aim is to meticulously investigate the unexplored realm of EV adoption within nations traditionally reliant on oil, exemplified by Saudia Arabia. By integrating the "task technology fit" (TTF) model and the "unified theory of acceptance and usage of technology" (UTAUT), this research develops and empirically validates the framework. A cross-section survey approach is adopted to collect 273 valid questionnaires from customers through convincing sampling. The empirical findings confirm that the integration of TTF and UTAUT positively promotes users' adoption of EVs. Surprisingly, the direct effect of TTF on behavioral intentions is insignificant, but UTAUT constructs play a significant role in establishing a significant relationship. Moreover, the UTAUT social influence factor has no impact on the EVs adoption. This groundbreaking research offers a comprehensive and holistic methodology for unravelling the complexities of EV adoption, achieved through the harmonious integration of two well-regarded theoretical frameworks. The nascent of this research lies in the skilful blending of technological and behavioral factors in the transportation sector.


Asunto(s)
Actitud , Intención , Tecnología , Encuestas y Cuestionarios , Arabia
2.
JMIR Serious Games ; 10(3): e32715, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35787488

RESUMEN

BACKGROUND: Augmented reality (AR) is an interactive technology that uses persuasive digital data and real-world surroundings to expand the user's reality, wherein objects are produced by various computer applications. It constitutes a novel advancement in medical care, education, and training. OBJECTIVE: The aim of this work was to assess how effective AR is in training medical students when compared to other educational methods in terms of skills, knowledge, confidence, performance time, and satisfaction. METHODS: We performed a meta-analysis on the effectiveness of AR in medical training that was constructed by using the Cochrane methodology. A web-based literature search was performed by using the Cochrane Library, Web of Science, PubMed, and Embase databases to find studies that recorded the effect of AR in medical training up to April 2021. The quality of the selected studies was assessed by following the Cochrane criteria for risk of bias evaluations. RESULTS: In total, 13 studies with a total of 654 participants were included in the meta-analysis. The findings showed that using AR in training can improve participants' performance time (I2=99.9%; P<.001), confidence (I2=97.7%; P=.02), and satisfaction (I2=99.8%; P=.006) more than what occurs under control conditions. Further, AR did not have any effect on the participants' knowledge (I2=99.4%; P=.90) and skills (I2=97.5%; P=.10). The meta-regression plot shows that there has been an increase in the number of articles discussing AR over the years and that there is no publication bias in the studies used for the meta-analysis. CONCLUSIONS: The findings of this work suggest that AR can effectively improve performance time, satisfaction, and confidence in medical training but is not very effective in areas such as knowledge and skill. Therefore, more AR technologies should be implemented in the field of medical training and education. However, to confirm these findings, more meticulous research with more participants is needed.

3.
Comput Intell Neurosci ; 2022: 5849995, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251153

RESUMEN

Heart failure is the most common cause of death in both males and females around the world. Cardiovascular diseases (CVDs), in particular, are the main cause of death worldwide, accounting for 30% of all fatalities in the United States and 45% in Europe. Artificial intelligence (AI) approaches such as machine learning (ML) and deep learning (DL) models are playing an important role in the advancement of heart failure therapy. The main objective of this study was to perform a network meta-analysis of patients with heart failure, stroke, hypertension, and diabetes by comparing the ML and DL models. A comprehensive search of five electronic databases was performed using ScienceDirect, EMBASE, PubMed, Web of Science, and IEEE Xplore. The search strategy was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. The methodological quality of studies was assessed by following the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) guidelines. The random-effects network meta-analysis forest plot with categorical data was used, as were subgroups testing for all four types of treatments and calculating odds ratio (OR) with a 95% confidence interval (CI). Pooled network forest, funnel plots, and the league table, which show the best algorithms for each outcome, were analyzed. Seventeen studies, with a total of 285,213 patients with CVDs, were included in the network meta-analysis. The statistical evidence indicated that the DL algorithms performed well in the prediction of heart failure with AUC of 0.843 and CI [0.840-0.845], while in the ML algorithm, the gradient boosting machine (GBM) achieved an average accuracy of 91.10% in predicting heart failure. An artificial neural network (ANN) performed well in the prediction of diabetes with an OR and CI of 0.0905 [0.0489; 0.1673]. Support vector machine (SVM) performed better for the prediction of stroke with OR and CI of 25.0801 [11.4824; 54.7803]. Random forest (RF) results performed well in the prediction of hypertension with OR and CI of 10.8527 [4.7434; 24.8305]. The findings of this work suggest that the DL models can effectively advance the prediction of and knowledge about heart failure, but there is a lack of literature regarding DL methods in the field of CVDs. As a result, more DL models should be applied in this field. To confirm our findings, more meta-analysis (e.g., Bayesian network) and thorough research with a larger number of patients are encouraged.


Asunto(s)
Inteligencia Artificial , Enfermedades Cardiovasculares , Teorema de Bayes , Enfermedades Cardiovasculares/diagnóstico , Femenino , Humanos , Aprendizaje Automático , Masculino , Metaanálisis en Red
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...