Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35203623

RESUMEN

Robust inflammation-suppressing nanoparticles based on α1-acid glycoprotein (AGP)-conjugated hyaluronic acid nanoparticles (AGP-HA NPs) were designed to regulate breast cancer cells' sensitivity to chemotherapy and to suppress tumor metastasis. The successful conjugation between AGP and HA NPs was confirmed using FTIR, zeta potential, and UV-vis spectroscopy. In vitro studies on MCF-7 cells indicated the remarkable ability of AGP-HA NPs in suppressing migratory tumor ability by 79% after 24 h. Moreover, the efficacy study showed the high capability of AGP-HA NPs in modulating MDA-MB-231 cells and restoring cell sensitivity to the chemotherapeutic drug doxorubicin (DOX). Furthermore, the finding obtained by flow cytometry and confocal spectroscopy demonstrated that AGP-HA NPs enhanced DOX uptake/retention and aided it to reach cell nucleus within 4 h of incubation. Therefore, AGP-HA NPs represent a viable and effective treatment option to strengthen the anticancer effects of chemotherapeutic agents and potentially improve patients' survival rates.

2.
Chem Sci ; 12(7): 2329-2344, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34163998

RESUMEN

Biologics, such as functional proteins and nucleic acids, have recently dominated the drug market and comprise seven out of the top 10 best-selling drugs. Biologics are usually polar, heat sensitive, membrane impermeable and subject to enzymatic degradation and thus require systemic routes of administration and delivery. Coordination-based delivery vehicles, which include nanosized extended metal-organic frameworks (nMOFs) and discrete coordination cages, have gained a lot of attention because of their remarkable biocompatibility, in vivo stability, on-demand biodegradability, high encapsulation efficiency, easy surface modification and moderate synthetic conditions. Consequently, these systems have been extensively utilized as carriers of biomacromolecules for biomedical applications. This review summarizes the recent applications of nMOFs and coordination cages for protein, CRISPR-Cas9, DNA and RNA delivery. We also highlight the progress and challenges of coordination-based platforms as a promising approach towards clinical biomacromolecule delivery and discuss integral future research directions and applications.

3.
Sci Adv ; 7(4)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523955

RESUMEN

The major impediments to the implementation of cancer immunotherapies are the sustained immune effect and the targeted delivery of these therapeutics, as they have life-threatening adverse effects. In this work, biomimetic metal-organic frameworks [zeolitic imidazolate frameworks (ZIFs)] are used for the controlled delivery of nivolumab (NV), a monoclonal antibody checkpoint inhibitor that was U.S. Food and Drug Administration-approved back in 2014. The sustained release behavior of NV-ZIF has shown a higher efficacy than the naked NV to activate T cells in hematological malignancies. The system was further modified by coating NV-ZIF with cancer cell membrane to enable tumor-specific targeted delivery while treating solid tumors. We envisage that such a biocompatible and biodegradable immunotherapeutic delivery system may promote the development and the translation of hybrid superstructures into smart and personalized delivery platforms.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Zeolitas , Biomimética , Humanos , Inmunoterapia , Estructuras Metalorgánicas/química , Neoplasias/tratamiento farmacológico , Estados Unidos , Zeolitas/química
4.
Angew Chem Int Ed Engl ; 60(13): 7188-7196, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33354826

RESUMEN

Calix[4]pyrrole-based porous organic polymers (P1-P3) for removing organic micropollutants from water were prepared. A bowl-shaped α,α,α,α-tetraalkynyl calix[4]pyrrole and diketopyrrolopyrrole monomer were crosslinked via Sonogashira coupling to produce a 3D network polymer, P1. P1 proved too hydrophobic for use as an adsorbent and was converted to the corresponding neutral polymer P2 (containing carboxylic acid groups) and its anionic derivative P3 (containing carboxylate anion groups). Anionic P3 outperformed P2 in screening studies involving a variety of model organic micropollutants of different charge, hydrophilicity and functionality. P3 proved particularly effective for cationic micropollutants. The theoretical maximum adsorption capacity (qmax,e ) of P3 reached 454 mg g-1 for the dye methylene blue, 344 mg g-1 for the pesticide paraquat, and 495 mg g-1 for diquat. These uptake values are significantly higher than those of most synthetic adsorbent materials reported to date.

5.
Nat Commun ; 11(1): 5882, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208753

RESUMEN

Engineering membranes for molecular separation in organic solvents is still a big challenge. When the selectivity increases, the permeability tends to drastically decrease, increasing the energy demands for the separation process. Ideally, organic solvent nanofiltration membranes should be thin to enhance the permeant transport, have a well-tailored nanoporosity and high stability in harsh solvents. Here, we introduce a trianglamine macrocycle as a molecular building block for cross-linked membranes, prepared by facile interfacial polymerization, for high-performance selective separations. The membranes were prepared via a two-in-one strategy, enabled by the amine macrocycle, by simultaneously reducing the thickness of the thin-film layers (<10 nm) and introducing permanent intrinsic porosity within the membrane (6.3 Å). This translates into a superior separation performance for nanofiltration operation, both in polar and apolar solvents. The hyper-cross-linked network significantly improved the stability in various organic solvents, while the amine host macrocycle provided specific size and charge molecular recognition for selective guest molecules separation. By employing easily customized molecular hosts in ultrathin membranes, we can significantly tailor the selectivity on-demand without compromising the overall permeability of the system.

6.
J Am Chem Soc ; 142(4): 1715-1720, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31931564

RESUMEN

Effective and cell-type-specific delivery of CRISPR/Cas9 gene editing elements remains a challenging open problem. Here we report the development of biomimetic cancer cell coated zeolitic imidazolate frameworks (ZIFs) for targeted and cell-specific delivery of this genome editing machinery. Coating ZIF-8 that is encapsulating CRISPR/Cas9 (CC-ZIF) with a cancer cell membrane resulted in the uniformly covered C3-ZIF(cell membrane type). Incubation of C3-ZIFMCF with MCF-7, HeLa, HDFn, and aTC cell lines showed the highest uptake by MCF-7 cells and negligible uptake by the healthy cells (i.e., HDFn and aTC). As to genome editing, a 3-fold repression in the EGFP expression was observed when MCF-7 were transfected with C3-ZIFMCF compared to 1-fold repression in the EGFP expression when MCF-7 were transfected with C3-ZIFHELA. In vivo testing confirmed the selectivity of C3-ZIFMCF to accumulate in MCF-7 tumor cells. This supports the ability of this biomimetic approach to match the needs of cell-specific targeting, which is unquestionably the most critical step in the future translation of genome editing technologies.


Asunto(s)
Biomimética , Sistemas CRISPR-Cas , Estructuras Metalorgánicas/química , Animales , Células HeLa , Xenoinjertos , Humanos , Células MCF-7 , Ratones
7.
ACS Appl Bio Mater ; 2(3): 970-974, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35021386

RESUMEN

Natural and synthetic membrane active molecules increase the permeability of cell membranes. This can help cells combat multidrug efflux pumps as well as improve signaling and transfection. In this work, thermoresponsive metal-organic complexes (MOCs) have been constructed to transport cell impermeable cargo across the membrane through a pore-aiding assembly. These MOCs can be reversibly controlled as they collapse when the temperature is increased and are simultaneously regenerated when the system is cooled down to room temperature. These ON/OFF molecular valves can be potentially used to overcome multidrug resistance (MDR) in cancer cells and as building blocks for artificial cells.

8.
RSC Adv ; 9(11): 6299-6309, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35517263

RESUMEN

Nanoscaled spinel-structured ferrites bear promise as next-generation contrast agents for magnetic resonance imaging. However, the small size of the particles commonly leads to colloidal instability under physiological conditions. To circumvent this problem, supports onto which the dispersed nanoparticles can be anchored have been proposed. Amongst these, flakes of graphene have shown interesting performance but it remains unknown if and how their surface texture and chemistry affect the magnetic properties and relaxation time (T 2) of the ferrite nanoparticles. Here, it is shown that the type of graphene oxide (GO) precursor, used to make composites of cobalt ferrite (CoFe2O4) and reduced GO, influences greatly not just the T 2 but also the average size, dispersion and magnetic behaviour of the grafted nanoparticles. Accordingly, and without compromising biocompatibility, a judicious choice of the initial GO precursor can result in the doubling of the proton relaxivity rate in this system.

9.
J Am Chem Soc ; 140(1): 143-146, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29272114

RESUMEN

CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled codelivery of intact Cas9 protein and sgRNA.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Endosomas/metabolismo , Edición Génica , Imidazoles/química , Nanopartículas/química , Zeolitas/química , Animales , Células CHO , Cricetulus , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...