Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nutrition ; 120: 112333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38271759

RESUMEN

OBJECTIVE: The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS: Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS: The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS: Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.


Asunto(s)
Resistencia a la Insulina , Neuropéptidos , Ratas , Animales , Leptina/metabolismo , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteína Relacionada con Agouti/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Receptores de Leptina/genética , ADN Metiltransferasa 3A , Ratas Sprague-Dawley , Obesidad/genética , Obesidad/metabolismo , Hiperfagia/complicaciones , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Superóxido Dismutasa/metabolismo , Angiotensinas/metabolismo
2.
Biomed Pharmacother ; 155: 113796, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36271572

RESUMEN

Psidium guajava (guava) leaves extract displays anti-hypertensive properties by mechanisms not yet fully understood. Here, we investigated whether sympathetic drive and immune signaling mechanisms are involved with the antihypertensive effect of the guava extract in a model of salt-dependent hypertension. Raw guava extract (rPsE) was characterized by colorimetric and UPLC-MS techniques. Two doses of rPsE (100 and 200 mg/kg) were evaluated for anti-hypertensive effect using a suspension system (PsE). Weaned male Wistar rats were put on a high-salt diet (HSD, 0.90 % Na+) for 16 weeks and received gavages of PsE for the last 4 weeks. Blood pressure (BP) was measured at the end of treatment in conscious rats. The neurogenic pressor effect was assessed by ganglionic blockade with hexamethonium. Autonomic modulation of heart rate was evaluated by spectral analysis. The effects of orally administered PsE on lumbar sympathetic nerve activity (LSNA) were assessed in anesthetized rats. Blood IL-10, IL-17A, and TNF were measured. The increased neurogenic pressor effect of HSD rats was reduced by PsE 100 mg/kg, but not by 200 mg/kg. PsE (200 mg/kg) administration in anesthetized rats produced a greater fall in BP of HSD rats compared to standard salt diet (SSD) rats. PsE hypotensive response elicited an unproportionable increase in LSNA of HSD rats compared to SSD rats. PsE (200 mg/kg) increased plasma concentrations of IL-10 but had no effect on TNF or IL-17A. Our data indicate that the antihypertensive effects of PsE may involve autonomic mechanisms and immunomodulation by overexpression of IL-10 in salt-dependent hypertensive rats.


Asunto(s)
Hipertensión , Psidium , Ratas , Masculino , Animales , Presión Sanguínea , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Interleucina-17/farmacología , Hexametonio/farmacología , Hexametonio/uso terapéutico , Interleucina-10 , Cromatografía Liquida , Ratas Wistar , Espectrometría de Masas en Tándem , Hipertensión/tratamiento farmacológico , Cloruro de Sodio Dietético , Hojas de la Planta , Cloruro de Sodio , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
3.
Exp Physiol ; 106(2): 412-426, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33347659

RESUMEN

NEW FINDINGS: What is the central question of this study? How does swimming exercise training impact hydro-electrolytic balance, renal function, sympathetic contribution to resting blood pressure and cerebrospinal fluid (CSF) [Na+ ] in rats fed a high-sodium diet from weaning? What is the main finding and its importance? An exercise-dependent reduction in blood pressure was associated with decreased CSF [Na+ ], sympathetically driven vasomotor tonus and renal fibrosis indicating that the anti-hypertensive effects of swimming training in rats fed a high-sodium diet might involve neurogenic mechanisms regulated by sodium levels in the CSF rather than changes in blood volume. ABSTRACT: High sodium intake is an important factor associated with hypertension. High-sodium intake with exercise training can modify homeostatic hydro-electrolytic balance, but the effects of this association are mostly unknown. In this study, we sought to investigate the effects of swimming training (ST) on cerebrospinal fluid (CSF) Na+ concentration, sympathetic drive, blood pressure (BP) and renal function of rats fed a 0.9% Na+ (equivalent to 2% NaCl) diet with free access to water for 22 weeks after weaning. Male Wistar rats were assigned to two cohorts: (1) fed standard diet (SD) and (2) fed high-sodium (HS) diet. Each cohort was further divided into trained and sedentary groups. ST normalised BP levels of HS rats as well as the higher sympathetically related pressor activity assessed by pharmacological blockade of ganglionic transmission (hexamethonium). ST preserved the renal function and attenuated the glomerular shrinkage elicited by HS. No change in blood volume was found among the groups. CSF [Na+ ] levels were higher in sedentary HS rats but were reduced by ST. Our findings showed that ST effectively normalised BP of HS rats, independent of its effects on hydro-electrolytic balance, which might involve neurogenic mechanisms regulated by Na+ levels in the CSF as well as renal protection.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Presión Sanguínea/fisiología , Hipertensión/fisiopatología , Riñón/fisiopatología , Sodio en la Dieta , Animales , Sistema Nervioso Autónomo/patología , Dieta , Frecuencia Cardíaca/fisiología , Hipertensión/patología , Riñón/patología , Masculino , Condicionamiento Físico Animal , Ratas , Ratas Wistar , Natación , Equilibrio Hidroelectrolítico
4.
Front Pharmacol ; 11: 1263, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982727

RESUMEN

In previous studies we have shown that oral Ang-(1-7) has a beneficial therapeutic effect on cardiometabolic disturbances present in metabolic syndrome (MetS). Based on the fact that Ang-(1-7) acts through release of nitric oxide (NO), a new peptide, A-1317 was engineered adding the amino acid L-Arginine, the NO precursor, to the N-terminal portion of the Ang-(1-7). Therefore, in a single molecule the substrate and the activator of NO are combined. In the present study, we evaluated the effect of A-1317 oral treatment on liver-glucose metabolism in MetS induced by high fat (HF) diet in rats. Rats were subjected to control (AIN-93M, CT) or HF diets for 15 weeks to induce MetS and treated with A-1317, Ang-(1-7) included into hydroxypropyl-ß-cyclodextrin (HPßCD) or empty HPßCD (E), in the last 7 weeks. At the end of 15 weeks, hemodynamic, biometric, and biochemical parameters, redox process, and qRT-PCR gene expression of NO synthase and RAS components were evaluated in the liver. HF/E rats increased body mass gain, adiposity index, despite the reduction in food intake, increased plasma leptin, total cholesterol, triglycerides, ALT, fasting blood glucose, OGTT and insulin, HOMA-IR and MAP and HR. Furthermore, the MetS rats presented increased in liver angiotensinogen, AT1R, ACE mRNA gene expression and concentration of MDA and carbonylated protein. Both Ang-(1-7) and A-1317 oral treatment in MetS rats reverted most of these alterations. However, A-1317 was more efficient in reducing body mass gain, ALT, AST, total cholesterol, insulin, fasting blood glucose, ameliorating ß cell capacity by increasing HOMA-ß and QUICKI, whereas Ang-(1-7) reduced HOMA-ß and QUICKI. In addition, Ang-(1-7) increased Mas and AKT liver mRNA gene expression, while A-1317 increased both Mas and MRGD and AMPK liver mRNA gene expression, suggesting a distinct pathway of action of Ang-(1-7) and A-1317 in MetS rats. Taken together, our data showed that treatment with A-1317 was able to ameliorate MetS disorders and suggested that this effect was mainly via MRGD via activation of AMPK and increasing ß cell function.

5.
Peptides ; 134: 170409, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32950566

RESUMEN

Hypertension is associated with increased central activity of the renin-angiotensin system (RAS) and oxidative stress. Here, we evaluated whether reactive species and neurotransmitters could contribute to the hypotensive effect induced by angiotensin (Ang) II and Ang-(1-7) at the caudal ventrolateral medulla (CVLM) in renovascular hypertensive rats (2K1C). Therefore, we investigated the effect of Ang II, Ang-(1-7), and the Ang-(1-7) antagonist A-779 microinjected before and after CVLM microinjection of the nitric oxide (NO)-synthase inhibitor, (L-NAME), vitamin C (Vit C), bicuculline, or kynurenic acid in 2K1C and SHAM rats. Baseline values of the mean arterial pressure (MAP) in 2K1C rats were higher than in SHAM rats. CVLM microinjection of Ang II, Ang-(1-7), l-NAME, or bicuculline induced decreases in the MAP in SHAM and 2K1C rats. In addition, Vit C and A-779 produced decreases in the MAP only in 2K1C rats. Kynurenic acid increased the MAP in both SHAM and 2K1C rats. Only the Ang-(1-7) effect was increased by l-NAME and reduced by bicuculline in SHAM rats. L-NAME also reduced the A-779 effect in 2K1C rats. Only the Ang II effect was abolished by CVLM Vit C and enhanced by CVLM kynurenic acid in SHAM and 2K1C rats. Overall, the superoxide anion and glutamate participated in the hypotensive effect of Ang II, while NO and GABA participated in the hypotensive effect of Ang-(1-7) in CVLM. The higher hypotensive response of A-779 in the CVLM of 2K1C rats suggests that Ang-(1-7) contributes to renovascular hypertension.


Asunto(s)
Angiotensina II/farmacología , Angiotensina I/farmacología , Hipertensión Renovascular/tratamiento farmacológico , Bulbo Raquídeo/metabolismo , Fragmentos de Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Animales , Antihipertensivos/farmacología , Modelos Animales de Enfermedad , Frecuencia Cardíaca , Hipertensión Renovascular/metabolismo , Hipertensión Renovascular/patología , Masculino , Bulbo Raquídeo/efectos de los fármacos , Ratas , Vasoconstrictores/farmacología
6.
Life Sci ; 250: 117549, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32179073

RESUMEN

AIM: To evaluate physical fitness and cardiovascular effects in rats with renovascular hypertension, two kidneys, one clip (2K1C) submitted to voluntary exercise (ExV). MAIN METHODS: 24 h after surgery (SHAM and 2K1C) rats were submitted to ExV for one week (adaptation). ExV adherent rats were separated into exercise (2K1C-EX and SHAM-EX) or sedentary (2K1C-SED and SHAM-SED) groups. After 4 weeks, exhaustion test, plasma lactate, cardiovascular parameters were evaluated and gastrocnemius muscle was removed for evaluation of gene expression of muscle metabolism markers (PGC1α; AMPK, SIRT-1, UCP-3; MCP-1; LDH) and of the redox process. KEY FINDINGS: ExV decreased blood lactate concentration and increased SOD and CAT activity and a SIRT-1 and UCP-3 gene expression in the gastrocnemius muscle of 2K1C-ExV rats compared to 2K1C-SED rats. Gene expressions of PGC1α, UCP-3, MCT-1, AMPK were higher in 2K1C-ExV rats compared to SHAM-SED rats. Blood pressure in 2K1C-ExV was lower compared to 2K1C-SED and higher in SHAM-SED rats. Reflex bradycardia in 2K1C-EX rats increased compared to 2K1C-SED and was similar to SHAM-SED. The variation in mean blood pressure induced by ganglion blocker hexamethonium and Ang II AT1 receptor antagonist, losartan in the 2K1C-ExV rats was smaller compared to the 2K1C-SED rats and it was similar to the SHAM-SED rats. SIGNIFICANCE: O ExV induced adaptive responses in 2K1C-ExV rats by decreasing sympathetic and Ang II activities and stimulating intracellular signaling that favors redox balance and reduced blood lactate concentration. These adaptive responses, then, contribute to reduced arterial pressure, improved baroreflex sensitivity and physical fitness of 2K1C rats.


Asunto(s)
Hipertensión Renovascular/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Transducción de Señal , Animales , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Bradicardia , Modelos Animales de Enfermedad , Frecuencia Cardíaca/efectos de los fármacos , Riñón/efectos de los fármacos , Losartán/farmacología , Masculino , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Endogámicas F344 , Sirtuina 1/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Proteína Desacopladora 3/metabolismo
7.
Br J Nutr ; 123(1): 59-71, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31666143

RESUMEN

A high-fat (H) diet increases metabolic disorders in offspring. However, there is great variability in the literature regarding the time of exposure, composition of the H diets offered to the genitors and/or offspring and parameters evaluated. Here, we investigated the effect of a H diet subjected to the genitors on different cardio-metabolic parameters on first (F1)- and second (F2)-generation offspring. Female Fischer rats, during mating, gestation and breast-feeding, were subjected to the H diet (G0HF) or control (G0CF) diets. Part of F1 offspring becomes G1 genitors for generating the F2 offspring. After weaning, F1 and F2 rats consumed only the C diet. Nutritional, biometric, biochemical and haemodynamic parameters were evaluated. G0HF genitors had a reduction in food intake but energy intake was similar to the control group. Compared with the control group, the F1H and F2H offspring presented increased plasma leptin, insulin and fasting glucose levels, dietary intake, energy intake, adiposity index, mean arterial pressure, sympathetic drive evidenced by the hexamethonium and insulin resistance. Our data showed that only during mating, gestation and breast-feeding, maternal H diet induced cardio-metabolic disorders characteristic of human metabolic syndrome that were transferred to both females and males of F1 and F2 offspring, even if they were fed control diet after weaning. This process probably occurs due to the disturbance in mechanisms related to leptin that increases energy intake in F1H and F2H offspring. The present data reinforce the importance of balanced diet during pregnancy and breast-feeding for the health of the F1 and F2 offspring.

8.
Arq. bras. cardiol ; 113(5): 905-912, Nov. 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1055041

RESUMEN

Abstract Background: Arterial hypertension is a precursor to the development of heart and renal failure, furthermore is associated with elevated oxidative markers. Environmental enrichment of rodents increases performance in memory tasks, also appears to exert an antioxidant effect in the hippocampus of normotensive rats. Objectives: Evaluate the effect of environmental enrichment on oxidative stress in the ventrolateral medulla, heart, and kidneys of renovascular hypertensive rats. Methods: Forty male Fischer rats (6 weeks old) were divided into four groups: normotensive standard condition (Sham-St), normotensive enriched environment (Sham-EE), hypertensive standard condition (2K1C-St), and hypertensive enriched environment (2K1C-EE). Animals were kept in enriched or standard cages for four weeks after all animals were euthanized. The level of significance was at p < 0.05. Results: 2K1C-St group presented higher mean arterial pressure (mmHg) 147.0 (122.0; 187.0) compared to Sham-St 101.0 (94.0; 109.0) and Sham-EE 106.0 (90.8; 117.8). Ventrolateral medulla from 2K1C-EE had higher superoxide dismutase (SOD) (49.1 ± 7.9 U/mg ptn) and catalase activity (0.8 ± 0.4 U/mg ptn) compared to SOD (24.1 ± 9.8 U/mg ptn) and catalase activity (0.3 ± 0.1 U/mg ptn) in 2K1C-St. 2K1C-EE presented lower lipid oxidation (0.39 ± 0.06 nmol/mg ptn) than 2K1C-St (0.53 ± 0.22 nmol/mg ptn) in ventrolateral medulla. Furthermore, the kidneys of 2K1C-EE (11.9 ± 2.3 U/mg ptn) animals presented higher superoxide-dismutase activity than those of 2K1C-St animals (9.1 ± 2.3 U/mg ptn). Conclusion: Environmental enrichment induced an antioxidant effect in the ventrolateral medulla and kidneys that contributes to reducing oxidative damage among hypertensive rats.


Resumo Fundamento: A hipertensão arterial é um precursor para o desenvolvimento da insuficiência cardíaca e renal e, além disso, está associada com o aumento dos marcadores oxidativos. O enriquecimento ambiental dos roedores melhora o desempenho em tarefas de memória, e também parece ter um efeito antioxidante sobre o hipocampo dos ratos normotensos. Objetivos: Avaliar o efeito do enriquecimento ambiental sobre o estresse oxidativo no bulbo ventrolateral, coração, e rins de ratos com hipertensão renovascular. Métodos: Quarenta ratos machos, tipo Fischer (6 semanas de idade), foram divididos em quatro grupos: normotensos em condições padrão (Sham-CP), normotensos em ambiente enriquecido (Sham-AE), hipertensos em condições padrão (2R1C-CP), e hipertensos em ambiente enriquecido (2R1C-AE). Os animais foram mantidos em gaiolas enriquecidas ou padrão durante quatro semanas e, por fim, todos os animais foram eutanasiados. O nível de significância foi p < 0,05. Resultados: O grupo 2R1C-CP apresentou pressão arterial média maior (mmHg) 147,0 (122,0; 187,0) quando comparado com os grupos Sham-CP 101,0 (94,0; 109,0) e Sham-AE 106,0 (90,8; 117,8). Observou-se maior atividade das enzimas superóxido dismutase (SOD) (49,1 ± 7,9 U/mg ptn) e da catalase (0,8 ± 0,4 U/mg ptn) no bulbo ventrolateral do grupo 2R1C-AE, em relação à atividade da SOD (24,1 ± 9,8 U/mg ptn) e da catalase (0,3 ± 0,1 U/mg ptn) no grupo 2R1C-CP. No grupo 2R1C-AE, a oxidação lipídica no bulbo ventrolateral foi menor (0,39 ± 0,06 nmol/mg ptn) quando comparado com o grupo 2R1C-CP (0,53 ± 0,22 nmol/mg ptn). Ademais, foi observada maior atividade das enzimas superóxido dismutase nos rins dos animais 2R1C-AE (11,9 ± 2,3 U/mg ptn) em relação aos animais 2R1C-CP (9,1 ± 2,3 U/mg ptn). Conclusão: O enriquecimento ambiental provocou efeito antioxidante no bulbo ventrolateral e nos rins, o que contribuiu para a redução do dano oxidante nos ratos hipertensos.


Asunto(s)
Animales , Masculino , Bulbo Raquídeo/metabolismo , Estrés Oxidativo , Ambiente , Vivienda para Animales , Hipertensión Renovascular/metabolismo , Antioxidantes/metabolismo , Ratas Endogámicas F344 , Superóxido Dismutasa/metabolismo , Bulbo Raquídeo/enzimología , Peroxidación de Lípido , Catalasa/metabolismo , Carbonilación Proteica , Presión Arterial , Ventrículos Cardíacos/enzimología , Hipertensión Renovascular/inducido químicamente , Riñón/enzimología
9.
Arq Bras Cardiol ; 113(5): 905-912, 2019 11.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-31482985

RESUMEN

BACKGROUND: Arterial hypertension is a precursor to the development of heart and renal failure, furthermore is associated with elevated oxidative markers. Environmental enrichment of rodents increases performance in memory tasks, also appears to exert an antioxidant effect in the hippocampus of normotensive rats. OBJECTIVES: Evaluate the effect of environmental enrichment on oxidative stress in the ventrolateral medulla, heart, and kidneys of renovascular hypertensive rats. METHODS: Forty male Fischer rats (6 weeks old) were divided into four groups: normotensive standard condition (Sham-St), normotensive enriched environment (Sham-EE), hypertensive standard condition (2K1C-St), and hypertensive enriched environment (2K1C-EE). Animals were kept in enriched or standard cages for four weeks after all animals were euthanized. The level of significance was at p < 0.05. RESULTS: 2K1C-St group presented higher mean arterial pressure (mmHg) 147.0 (122.0; 187.0) compared to Sham-St 101.0 (94.0; 109.0) and Sham-EE 106.0 (90.8; 117.8). Ventrolateral medulla from 2K1C-EE had higher superoxide dismutase (SOD) (49.1 ± 7.9 U/mg ptn) and catalase activity (0.8 ± 0.4 U/mg ptn) compared to SOD (24.1 ± 9.8 U/mg ptn) and catalase activity (0.3 ± 0.1 U/mg ptn) in 2K1C-St. 2K1C-EE presented lower lipid oxidation (0.39 ± 0.06 nmol/mg ptn) than 2K1C-St (0.53 ± 0.22 nmol/mg ptn) in ventrolateral medulla. Furthermore, the kidneys of 2K1C-EE (11.9 ± 2.3 U/mg ptn) animals presented higher superoxide-dismutase activity than those of 2K1C-St animals (9.1 ± 2.3 U/mg ptn). CONCLUSION: Environmental enrichment induced an antioxidant effect in the ventrolateral medulla and kidneys that contributes to reducing oxidative damage among hypertensive rats.


Asunto(s)
Antioxidantes/metabolismo , Ambiente , Vivienda para Animales , Hipertensión Renovascular/metabolismo , Bulbo Raquídeo/metabolismo , Estrés Oxidativo , Animales , Presión Arterial , Catalasa/metabolismo , Ventrículos Cardíacos/enzimología , Hipertensión Renovascular/inducido químicamente , Riñón/enzimología , Peroxidación de Lípido , Masculino , Bulbo Raquídeo/enzimología , Carbonilación Proteica , Ratas Endogámicas F344 , Superóxido Dismutasa/metabolismo
10.
Oxid Med Cell Longev ; 2019: 5868935, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396301

RESUMEN

In prevention studies of metabolic syndrome (MetS), Ang-(1-7) has shown to improve the insulin signaling. We evaluated the HPßCD/Ang-(1-7) treatment on lipid metabolism, renin-angiotensin system (RAS) components, oxidative stress, and insulin pathway in the liver and gastrocnemius muscle and hepatic steatosis in rats with established MetS. After 7 weeks of high-fat (FAT) or control (CT) diets, rats were treated with cyclodextrin (HPßCD) or HPßCD/Ang-(1-7) in the last 6 weeks. FAT-HPßCD/empty rats showed increased adiposity index and body mass, gene expression of ACE/ANG II/AT1R axis, and oxidative stress. These results were accompanied by imbalances in the insulin pathway, worsening of liver function, hyperglycemia, and dyslipidemia. Oral HPßCD/Ang-(1-7) treatment decreased ACE and AT1R, increased ACE2 gene expression in the liver, and restored thiobarbituric acid reactive substances (TBARS), catalase (CAT), superoxide dismutase (SOD), insulin receptor substrate (Irs-1), glucose transporter type 4 (GLUT4), and serine/threonine kinase 2 (AKT-2) gene expression in the liver and gastrocnemius muscle improving hepatic function, cholesterol levels, and hyperglycemia in MetS rats. Overall, HPßCD/Ang-(1-7) treatment restored the RAS components, oxidative stress, and insulin signaling in the liver and gastrocnemius muscle contributing to the establishment of blood glucose and lipid homeostasis in MetS rats.


Asunto(s)
Angiotensina I/farmacología , Antioxidantes/farmacología , Síndrome Metabólico/patología , Fragmentos de Péptidos/farmacología , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Administración Oral , Enzima Convertidora de Angiotensina 2 , Animales , Catalasa/genética , Catalasa/metabolismo , Ciclodextrinas/farmacología , Dieta Alta en Grasa , Regulación de la Expresión Génica/efectos de los fármacos , Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/veterinaria , Músculo Esquelético/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Ratas , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
11.
Nutrition ; 67-68S: 100004, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-34332714

RESUMEN

OBJECTIVE: Angiotensin (Ang)-(1-7) has preventive effects on metabolic syndrome (MetS). The aim of this study was to evaluate the therapeutic effect of oral Ang-(1-7) on mean arterial pressure (MAP), insulin resistance (IR), inflammatory process, and remodeling of white adipose tissue (WAT) in rats with established MetS. METHODS: Rats were subjected to control (CT; AIN-93M) or high-fat (HF) diets for 13 wk to induce MetS and treated with Ang-(1-7) or vehicle (V) for the last 6 wk. At the end of 13 wk, MAP, biochemical and histological parameters, and uncoupling protein (UCP) and inflammatory gene expression were determined by quantitative reverse transcription polymerase chain reaction. RESULTS: HF-V rats showed increased visceral fat deposition, inflammatory cytokine expression, hyperplasia, and hypertrophy in retroperitoneal (WAT) and brown adipose tissue (BAT). Additionally, the gastrocnemius muscle reduced UCP-3 and increased the UCP-1 expression in BAT. HF-V also elevated levels of plasma insulin, glucose, homeostatic model assessment (HOMA) of IR and HOMA-ß, and increased body mass, adiposity, and MAP. Ang-(1-7) treatment in rats with MetS [HF-Ang-(1-7)] reduced WAT area, number of adipocytes, and expression of proinflammatory adipokines in WAT and BAT and increased UCP-3 in gastrocnemius muscle and UCP-1 expression in BAT compared with the HF-V group. These events prevented body mass gain, reduced adiposity, and normalized fasting plasma glucose, insulin levels, HOMA-IR, HOMA-ß, and MAP. CONCLUSION: Data from the present study demonstrated that oral Ang-(1-7) treatment is effective in restoring biochemical parameters and hypertension in established MetS by improving hypertrophy and hyperplasia in WAT and inflammation in adipose tissue, and regulating metabolic processes in the gastrocnemius muscle and BAT.

12.
J Physiol Biochem ; 74(3): 441-454, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29797227

RESUMEN

Physical training (PT) has been considered as a treatment in metabolic syndrome (MS), since it induces thermogenic activity in brown (BAT) and white (WAT) adipose tissues. We evaluated the therapeutic effect of PT on activity of WAT and BAT in rats with MS induced by high-fat diet (30% lard) for 13 weeks and submitted, for the last 6 weeks, to swimming or kept sedentary (SED) rats. MS-SED rats compared to control diet (CT-SED) rats showed low physical fitness and high levels of glucose, insulin, homeostasis evaluation of insulin resistance (HOMA-IR), homeostasis evaluation of the functional capacity of ß-cells (HOMA-ß), and blood pressure. The gastrocnemius muscle decreased in peroxisome proliferator-activated receptor gamma coactivator 1-alpha and beta (PGC-1α, PGC-1ß), and uncoupled protein 2 and 3 (UCP2 and UCP3) expressions. Both WAT and BAT increased in the adipocyte area and decreased in blood vessels and fibroblast numbers. WAT increased in expression of pro-inflammatory adipokines and decreased in anti-inflammatory adipokine and adiponectin. WAT and gastrocnemius showed impairment in the insulin signaling pathway. In response to PT, MS rats showed increased physical fitness and restoration of certain biometric and biochemical parameters and blood pressure. PT also induced thermogenic modulations in skeletal muscle, WAT and BAT, and also improved the insulin signaling pathway. Collectively, PT was effective in treating MS by inducing improvement in physical fitness and interchangeable effects between skeletal muscle, WAT and BAT, suggesting a development of brown-like adipocyte cells.


Asunto(s)
Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/patología , Adiposidad , Resistencia a la Insulina , Síndrome Metabólico/terapia , Condicionamiento Físico Animal , Termogénesis , Adipoquinas/genética , Adipoquinas/metabolismo , Tejido Adiposo Pardo/irrigación sanguínea , Tejido Adiposo Pardo/inmunología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/irrigación sanguínea , Tejido Adiposo Blanco/inmunología , Tejido Adiposo Blanco/metabolismo , Animales , Biomarcadores/sangre , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/efectos adversos , Regulación de la Expresión Génica , Hiperglucemia/etiología , Hiperglucemia/prevención & control , Hiperinsulinismo/etiología , Hiperinsulinismo/prevención & control , Hipertensión/etiología , Hipertensión/prevención & control , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Síndrome Metabólico/fisiopatología , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distribución Aleatoria , Ratas Endogámicas F344 , Destete
13.
Sci Rep ; 7(1): 5655, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720883

RESUMEN

In this study, we investigated some mechanisms involved in sodium-dependent hypertension of rats exposed to chronic salt (NaCl) intake from weaning until adult age. Weaned male Wistar rats were placed under high (0.90% w/w, HS) or regular (0.27% w/w, Cont) sodium diets for 12 weeks. Water consumption, urine output and sodium excretion were higher in HS rats compared to control. Blood pressure (BP) was directly measured by the arterial catheter and found 13.8% higher in HS vs Cont rats. Ganglionic blockade with hexamethonium caused greater fall in the BP of HS rats (33%), and central antagonism of AT1 receptors (losartan) microinjected into the lateral ventricle reduced BP level of HS, but not of Cont group. Heart rate variability analysis revealed sympathetic prevalence on modulation of the systolic interval. HS diet did not affect creatinine clearance. Kidney histological analysis revealed no significant change in renal corpuscle structure. Sodium and potassium concentrations in CSF were found higher in HS rats despite no change in plasma concentration of these ions. Taken together, data suggest that animals exposed to chronic salt intake to a level close to that reported for human' diet since weaning lead to hypertension, which appears to rely on sodium-driven neurogenic mechanisms.


Asunto(s)
Antihipertensivos/administración & dosificación , Hipertensión/inducido químicamente , Potasio/líquido cefalorraquídeo , Cloruro de Sodio Dietético/administración & dosificación , Sodio/líquido cefalorraquídeo , Animales , Antihipertensivos/uso terapéutico , Determinación de la Presión Sanguínea , Frecuencia Cardíaca , Hexametonio/administración & dosificación , Hexametonio/uso terapéutico , Hipertensión/líquido cefalorraquídeo , Hipertensión/tratamiento farmacológico , Losartán/administración & dosificación , Losartán/uso terapéutico , Masculino , Ratas , Ratas Wistar , Sodio/orina , Cloruro de Sodio Dietético/efectos adversos , Destete
14.
Redox Rep ; 22(6): 515-523, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28403686

RESUMEN

Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.


Asunto(s)
Insulina/metabolismo , Hígado/metabolismo , Natación/fisiología , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Dieta Alta en Grasa , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Masculino , Estrés Oxidativo/fisiología , Ratas , Superóxido Dismutasa/metabolismo
15.
Neurosci Lett ; 642: 142-147, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28189741

RESUMEN

Redox imbalance in regions of the CNS controlling blood pressure is increasingly recognized as a leading factor for hypertension. Nucleus tractus solitarius (NTS) of the dorsomedial medulla is the main region receiving excitatory visceral sensory inputs that modulate autonomic efferent drive to the cardiovascular system. This study sought to determine the capacity of reduced glutathione, a major bioactive antioxidant, to modulate NTS-mediated control of cardiovascular function in unanaesthetized rats. Male Fischer 344 rats were used for microinjection experiments. Cardiovascular responses to l-glutamate were first used to verify accurate placement of injections into the dorsomedial region comprising the NTS. Next, responses to GSH or vehicle were recorded followed by responses to l-glutamate again at the same site. GSH microinjection increased mean arterial pressure (MAP) compared to vehicle and abrogated responses to subsequent injection of l-glutamate. These data indicate that GSH microinjection into the NTS affects blood pressure regulation by dorsomedial neuronal circuits and blunts l-glutamate driven excitation in this region. These findings raise the possibility that increased antioxidant actions of GSH in NTS could contribute to autonomic control dysfunctions of the cardiovascular system.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Ácido Glutámico/farmacología , Glutatión/farmacología , Núcleo Solitario/efectos de los fármacos , Animales , Masculino , Microinyecciones , Neuronas/efectos de los fármacos , Ratas , Ratas Endogámicas F344
16.
Exp Physiol ; 102(1): 34-47, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27763697

RESUMEN

NEW FINDINGS: What is the central question of this study? In this study, we sought to investigate whether cardiovascular responses to peripheral chemoreflex activation of rats recovered from protein restriction are related to activation of AT1 receptors. What is the main finding and its importance? This study highlights the fact that angiotensinergic mechanisms activated by AT1 receptors do not support increased responses to peripheral chemoreflex activation by KCN in rats recovered from protein restriction. Also, we found that protein restriction led to increased resting ventilation in adult rats, even after recovery. The effects of a low-protein diet followed by recovery on cardiorespiratory responses to peripheral chemoreflex activation were tested before and after systemic angiotensin II type 1 (AT1 ) receptor antagonism. Male Fischer rats were divided into control and recovered (R-PR) groups after weaning. The R-PR rats were fed a low-protein (8%) diet for 35 days and recovered with a normal protein (20%) diet for 70 days. Control rats received a normal protein diet for 105 days (CG105 ). After cannulation surgery, mean arterial pressure, heart rate, respiratory frequency, tidal volume and minute ventilation were acquired using a digital recording system in freely moving rats. The role of angintensin II was evaluated by systemic antagonism of AT1 receptors with losartan (20 mg kg-1 i.v.). The peripheral chemoreflex was elicited by increasing doses of KCN (20-160 µg kg min-1 , i.v.). At baseline, R-PR rats presented increased heart rate and minute ventilation (372 ± 34 beats min-1 and 1.274 ± 377 ml kg-1  min-1 ) compared with CG105 animals (332 ± 22 beats min-1 and 856 ± 112 ml kg-1  min-1 ). Mean arterial pressure was not different between the groups. Pressor and bradycardic responses evoked by KCN (60 µg kg-1 ) were increased in R-PR (+45 ± 13 mmHg and -77 ± 47 beats min-1 ) compared with CG105 rats (+25 ± 17 mmHg and -27 ± 28 beats min-1 ), but no difference was found in the tachypnoeic response. These differences were preserved after losartan. The data suggest that angiotensin II acting on AT1 receptors may not be associated with the increased heart rate, increased minute ventilation and acute cardiovascular responses to peripheral chemoreflex activation in rats that underwent postweaning protein restriction followed by recovery.


Asunto(s)
Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatología , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiología , Receptor de Angiotensina Tipo 1/metabolismo , Reflejo/fisiología , Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Presión Arterial/efectos de los fármacos , Presión Arterial/fisiología , Bradicardia/metabolismo , Sistema Cardiovascular/efectos de los fármacos , Células Quimiorreceptoras/efectos de los fármacos , Dieta con Restricción de Proteínas/métodos , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Losartán/farmacología , Masculino , Ratas , Ratas Endogámicas F344 , Reflejo/efectos de los fármacos , Taquicardia/metabolismo , Volumen de Ventilación Pulmonar/efectos de los fármacos , Volumen de Ventilación Pulmonar/fisiología
17.
Lipids Health Dis ; 12: 136, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24044579

RESUMEN

BACKGROUND: The metabolic syndrome (MS) is characterized by variable coexistence of metabolic and pathophysiological alterations which are important risk factors for developing of type II diabetes and/or cardiovascular diseases. Increased of MS patients in worldwide has stimulated the development of experimental models. However, it is still challenging to find an dietetic model that most closely approximates human MS and, in addition, is not yet fully established the effect of different diets of MS in lipid metabolism in rats of different ages. The aim of this study was to evaluate the effect of different diets of MS in lipid metabolism and ectopic fat deposition and define the most appropriate diet for inducing the characteristic disturbances of the human MS in rats of different ages. METHODS: Young (4 weeks old) and adult rats (12 weeks old) were given a high-fat (FAT) or high-fructose diet (FRU) for 13 weeks and biochemical, physiological, histological and biometric parameters were evaluated. RESULTS: In young rats, the FAT diet induced increased mean blood pressure (MAP) and heart rate (HR), body weight after 6 to 10 weeks, and in the 13th week, increased the liver, mesenteric, retroperitoneal and epididymal fat weights, fasting glucose, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and reduced HDL cholesterol; and also induced non-alcoholic fatty liver disease (NAFLD) and renal inflammatory infiltrates. In adult rats, the FRU diet induced transient elevations of MAP and HR in the 6th week, and, at 13 weeks, increased fasting glucose, triglycerides, total cholesterol, AST and ALT; increased liver, kidneys and retroperitoneal fat weights; and induced macrovesicular and microvesicular NAFLD, the presence of fat cells in the kidney, glomerular sclerosis, and liver and kidney inflammation. Additionally, the FAT and FRU diets induced, respectively, increases in liver glycogen in adults and young rats. CONCLUSIONS: Our data show that FRU diet in adult rats causes biggest change on metabolism of serum lipids and lipid accumulation in liver and kidney, while the FAT diet in young rats induces elevation of MAP and HR and higher increased visceral lipid stores, constituting the best nutritional interventions to induce MS in rats.


Asunto(s)
Dieta Alta en Grasa , Hígado Graso/metabolismo , Fructosa/administración & dosificación , Riñón/metabolismo , Hígado/metabolismo , Síndrome Metabólico/metabolismo , Tejido Adiposo/efectos de los fármacos , Factores de Edad , Animales , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Grasas de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Hígado Graso/etiología , Hígado Graso/patología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas/sangre , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/patología , Enfermedad del Hígado Graso no Alcohólico , Ratas , Ratas Endogámicas F344 , Triglicéridos/sangre
18.
Life Sci ; 92(4-5): 266-75, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23333828

RESUMEN

AIMS: The nonpeptide Ang-(1-7) analog, AVE 0991, is recognized as having beneficial cardiovascular effects similar to those induced by Ang-(1-7). In this study, we evaluated the effects of AVE 0991 on cardiovascular functions and on cardiac and renal remodeling in rats with 2K1C renovascular hypertension. MAIN METHODS: Fisher rats underwent surgery to induce 2K1C renovascular hypertension and were then treated with AVE 0991 (1 or 3mg/kg) for 28days. At the end of treatment, the blood pressure (BP), heart rate (HR), and baroreflex sensitivity were evaluated, in conscious animals. The rats were then euthanized and the heart and kidneys removed for subsequent histological analysis. KEY FINDINGS: Treatment with AVE 0991 in 2K1C rats restored the baroreflex sensitivity of both bradycardic and tachycardic components to levels comparable to those of normotensive SHAM rats. At a higher dose (3mg/kg), AVE 0991 was also anti-hypertensive in 2K1C rats. Furthermore, AVE 0991 reduced the heart weight, thickness of myocardial fibers, number of inflammatory cells, and area of collagen deposition in the hearts of 2K1C rats compared to SHAM rats. The inflammatory process and tissue area of collagen deposition were decreased in the clipped kidney of AVE 0091-treated 2K1C rats. SIGNIFICANCE: Our data showed that oral treatment with AVE 0991 reduces blood-pressure cardiac remodeling and improves baroreflex sensitivity in 2K1C renovascular hypertensive rats.


Asunto(s)
Angiotensina I/química , Antihipertensivos/uso terapéutico , Barorreflejo/efectos de los fármacos , Hipertensión Renovascular/tratamiento farmacológico , Imidazoles/uso terapéutico , Fragmentos de Péptidos/química , Remodelación Ventricular/efectos de los fármacos , Animales , Antihipertensivos/administración & dosificación , Presión Sanguínea/efectos de los fármacos , Colágeno/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión Renovascular/metabolismo , Hipertensión Renovascular/patología , Hipertensión Renovascular/fisiopatología , Imidazoles/administración & dosificación , Imidazoles/química , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Miocardio/metabolismo , Miocardio/patología , Ratas , Ratas Endogámicas F344
19.
Nitric Oxide ; 26(2): 118-25, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22265789

RESUMEN

Hypertension is associated to an increase in central oxidative stress and an attenuation of the baroreflex control of arterial pressure. The present study evaluated the effect of alterations in the levels of nitric oxide (NO) and superoxide anion in the caudal ventrolateral medulla (CVLM), a key area of the brainstem for the baroreflex control of arterial pressure, in renovascular hypertensive rats (2K1C). Baseline mean arterial pressure (MAP), heart rate (HR), and reflex bradycardia were evaluated 30 days after renal artery occlusion in anesthetized (urethane, 1.2 g/kg, i.p.) 2K1C or normotensive (SHAM) rats. The MAP, HR, and baroreflex control of HR were evaluated before and after CVLM microinjections of the non-selective NOS inhibitor L-NAME (10 nmol), the NO precursor L-ARG (50 nmol), or the antioxidant ascorbic acid, Vit C (10 nmol). In both 2K1C and SHAM animals, CVLM microinjection of L-NAME produced a decrease in MAP, whereas L-ARG induced a significant increase in MAP. However, microinjection of Vit C into the CVLM produced a decrease in MAP and HR only in 2K1C and not in SHAM rats. Cardiovascular effects produced by microinjection of l-ARG into the CVLM were abolished by prior microinjection of L-NAME in the CVLM of 2K1C and SHAM rats. Microinjection of L-NAME into the CVLM increased the sensitivity of reflex bradycardia in 2K1C animals. In contrast, the CVLM microinjection of L-ARG reduced reflex bradycardia only in SHAM rats. Vit C in the CVLM did not change reflex bradycardia in either 2K1C or in SHAM rats. These results suggest that increased oxidative stress in the CVLM during hypertension contributes to the reduced baroreflex sensitivity and to maintain hypertension in the 2K1C model.


Asunto(s)
Barorreflejo/fisiología , Bradicardia/metabolismo , Hipertensión Renovascular/metabolismo , Bulbo Raquídeo/metabolismo , Óxido Nítrico/metabolismo , Análisis de Varianza , Animales , Arginina/farmacología , Ácido Ascórbico/farmacología , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Masculino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenilefrina/farmacología , Ratas , Ratas Endogámicas F344 , Análisis de Regresión , Superóxidos/metabolismo
20.
Peptides ; 30(10): 1921-7, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19577603

RESUMEN

In the present study we evaluated the effect of caudal ventrolateral medulla (CVLM) microinjection of the main angiotensin (Ang) peptides, Ang II and Ang-(1-7), and their selective antagonists on baseline arterial pressure (AP) and on baroreceptor-mediated bradycardia in renovascular hypertensive rats (2K1C). Microinjection of Ang II and Ang-(1-7) into the CVLM of 2K1C rats produced similar decrease in AP as observed in Sham rats. In both Sham and 2K1C, the hypotensive effect of Ang II and Ang-(1-7) at the CVLM was blocked, for up to 30 min, by previous CVLM microinjection of the Ang II AT1 receptor antagonist, Losartan, and Ang-(1-7) Mas antagonist, A-779, respectively. As expected, the baroreflex bradycardia was lower in 2K1C in comparison to Sham rats. CVLM microinjection of A-779 improved the sensitivity of baroreflex bradycardia in 2K1C hypertensive rats. In contrast, Losartan had no effect on the baroreflex bradycardia in either 2K1C or Sham rats. These results suggest that Ang-(1-7) at the CVLM may contribute to the low sensitivity of the baroreflex control of heart rate in renovascular hypertensive rats.


Asunto(s)
Angiotensina II/análogos & derivados , Angiotensina I/antagonistas & inhibidores , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Bulbo Raquídeo/efectos de los fármacos , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/farmacología , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Animales , Antihipertensivos/farmacología , Bradicardia , Hipertensión/fisiopatología , Losartán/farmacología , Masculino , Bulbo Raquídeo/anatomía & histología , Microinyecciones , Fragmentos de Péptidos/administración & dosificación , Ratas , Ratas Endogámicas F344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...