Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 40(10): 4328-4340, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33308034

RESUMEN

The spread of fungal growth causes enormous economic, agricultural, and health problems for humans, such as Aspergillus sp., which produce aflatoxins. Thus, the inhibition of aflatoxin production became a precious target. In this research, the thioesterase (TE) domain from Polyketide synthase enzyme was selected to employ the in silico docking, using AutoDock Vina, against 623 natural compounds from the South African natural compound database (SANCDB), to identify potential inhibitors that can selectively inhibit thioesterase domain. The top ten inhibitors components were pinocembrin, typhaphthalide, p-coumaroylputrescine, dilemmaone A, 9-angelylplatynecine, 2,4,6-octatrienal, 4,8-dichloro-3,7-dimethyl-, (2e,4z,6e)-, lilacinobiose, 1,3,7-octatriene, 5,6-dichloro-2-(dichloromethyl)-6-methyl-, [r*,s*-(e)]-(-)- (9ci), lilacinobiose, 1,3,7-octatriene, 5,6-dichloro-2-(dichloromethyl)-6-methyl-, [r*,s*-(e)]-(-)- (9ci), 1,3,7-octatriene, 1,5,6-trichloro-2-(dichloromethyl)-6-methyl-, [r*,s*-(z,e)] and 9-angelylhastanecine and that depending on the lowest binding energy, the best chemical interactions and the best drug-likeness. The results of those components gave successful inhibition with the thioesterase domain. So, they can be used for inhibition and controlling aflatoxin contamination of agriculture crop yields, specially, pinocembrin which gave promising results.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Aflatoxinas , Aspergillus , Sintasas Poliquetidas , Aflatoxinas/química , Aspergillus/enzimología , Sintasas Poliquetidas/química
2.
Saudi J Biol Sci ; 27(12): 3187-3198, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304124

RESUMEN

Aflatoxins are toxic and carcinogenic components produced by some Aspergillus species such as Aspergillus flavus. Polyketide synthases enzyme (PKS) plays a central role in aflatoxin s biosynthesis of in Aspergillus flavus, especially the product template (PT) domain, which controls the aldol cyclization of the polyketide forerunner during the biosynthesis of the aflatoxin pathway process. Here, we apply the in silico approaches to validate 623 natural components obtained from the South African Natural Compound Database (SANCDB), to distinguish the PT domain s prospected inhibitors. From the 623 compounds, docking results showed that there are 330 different compounds with energy binding lower than the natural substrate (palmitic acid or PLM) of the Product Templet domain (PT). Three factors were selected to determine the best 10 inhibiting components; 1) energy binding, 2) the strengthen chemical interactions, 3) the drug-likeness. The top ten inhibiting components are kraussianone 6, kraussianone 1, neodiospyrin, clionamine D, bromotopsentin, isodiospyrin, spongotine A, kraussianone 3, 14ß-Hydroxybufa-3,5,20,22-tetraenolide and kraussianone 7. The chemical interactions between 3HRQ domain and the natural substrate in the active site amino acids are highly similar to the 3HRQ with the top ten components, but the main differences are in the binding energy which is the best in the top ten ligands. Those ten components give successful inhibition with PT domain which will lead to the formula to be used for inhibition and control aflatoxin contamination of agriculture crop yields and lessen the degree of harming and sicknesses that are coming about because of acquiring measures of aflatoxin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...