Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Genome Biol ; 24(1): 117, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189164

RESUMEN

BACKGROUND: The variation in the rate at which humans age may be rooted in early events acting through the genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions enriched for genetically controlled imprinting effects (the typical type of POE) and regions influenced by environmental effects associated with parents (the atypical POE). This part of the methylome is heavily influenced by early events, making it a potential route connecting early exposures, the epigenome, and aging. We aim to test the association of POE-CpGs with early and later exposures and subsequently with health-related phenotypes and adult aging. RESULTS: We perform a phenome-wide association analysis for the POE-influenced methylome using GS:SFHS (Ndiscovery = 5087, Nreplication = 4450). We identify and replicate 92 POE-CpG-phenotype associations. Most of the associations are contributed by the POE-CpGs belonging to the atypical class where the most strongly enriched associations are with aging (DNAmTL acceleration), intelligence, and parental (maternal) smoking exposure phenotypes. A proportion of the atypical POE-CpGs form co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased within-module methylation connectivity with age. The atypical POE-CpGs also display high levels of methylation heterogeneity, fast information loss with age, and a strong correlation with CpGs contained within epigenetic clocks. CONCLUSIONS: These results identify the association between the atypical POE-influenced methylome and aging and provide new evidence for the "early development of origin" hypothesis for aging in humans.


Asunto(s)
Envejecimiento , Epigenoma , Adulto , Humanos , Envejecimiento/genética , Fenotipo , Genómica , Epigenómica , Metilación de ADN , Islas de CpG , Epigénesis Genética
2.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711749

RESUMEN

Variation in the rate at which humans age may be rooted in early life events acting through genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions either enriched for genetically controlled imprinting effects (the typical type of POE) or atypical POE introduced by environmental effects associated with parents. This part of the methylome is heavily influenced by early life events, making it a potential route connecting early environmental exposures, the epigenome and the rate of aging. Here, we aim to test the association of POE-influenced methylation of CpG dinucleotides (POE-CpG sites) with early and later environmental exposures and subsequently with health-related phenotypes and adult aging phenotypes. We do this by performing phenome-wide association analyses of the POE-influenced methylome using a large family-based population cohort (GS:SFHS, Ndiscovery=5,087, Nreplication=4,450). At the single CpG level, 92 associations of POE-CpGs with phenotypic variation were identified and replicated. Most of the associations were contributed by POE-CpGs belonging to the atypical class and the most strongly enriched associations were with aging (DNAmTL acceleration), intelligence and parental (maternal) smoking exposure phenotypes. We further found that a proportion of the atypical-POE-CpGs formed co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased internal module connectivity (strength of methylation correlation across constituent CpGs) with age. Atypical POE-CpGs also displayed high levels of methylation heterogeneity and epigenetic drift (i.e. information loss with age) and a strong correlation with CpGs contained within epigenetic clocks. These results identified associations between the atypical-POE-influenced methylome and aging and provided new evidence for the "early development of origin" hypothesis for aging in humans.

3.
JAMA Psychiatry ; 79(11): 1110-1117, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36169986

RESUMEN

Importance: Self-reported trauma exposure has consistently been found to be a risk factor for major depressive disorder (MDD), and several studies have reported interactions with genetic liability. To date, most studies have examined gene-environment interactions with trauma exposure using genome-wide variants (single-nucleotide variations [SNVs]) or polygenic scores, both typically capturing less than 3% of phenotypic risk variance. Objective: To reexamine genome-by-trauma interaction associations using genetic measures using all available genotyped data and thus, maximizing accounted variance. Design, Setting, and Participants: The UK Biobank study was conducted from April 2007 to May 1, 2016 (follow-up mental health questionnaire). The current study used available cross-sectional genomic and trauma exposure data from UK Biobank. Participants who completed the mental health questionnaire and had available genetic, trauma experience, depressive symptoms, and/or neuroticism information were included. Data were analyzed from April 1 to August 30, 2021. Exposures: Trauma and genome-by-trauma exposure interactions. Main Outcomes and Measures: Measures of self-reported depression, neuroticism, and trauma exposure with whole-genome SNV data are available from the UK Biobank study. Here, a mixed-model statistical approach using genetic, trauma exposure, and genome-by-trauma exposure interaction similarity matrices was used to explore sources of variation in depression and neuroticism. Results: Analyses were conducted on 148 129 participants (mean [SD] age, 56 [7] years) of which 76 995 were female (52.0%). The study approach estimated the heritability (SE) of MDD to be approximately 0.160 (0.016). Subtypes of self-reported trauma exposure (catastrophic, adult, childhood, and full trauma) accounted for a significant proportion of the variance of MDD, with heritability (SE) ranging from 0.056 (0.013) to 0.176 (0.025). The proportion of MDD risk variance accounted for by significant genome-by-trauma interaction revealed estimates (SD) ranging from 0.074 (0.006) to 0.201 (0.009). Results from sex-specific analyses found genome-by-trauma interaction variance estimates approximately 5-fold greater for MDD in male participants (0.441 [0.018]) than in female participants (0.086 [0.009]). Conclusions and Relevance: This cross-sectional study used an approach combining all genome-wide SNV data when exploring genome-by-trauma interactions in individuals with MDD; findings suggest that such interactions were associated with depression manifestation. Genome-by-trauma interaction accounts for greater trait variance in male individuals, which points to potential differences in depression etiology between the sexes. The methodology used in this study can be extrapolated to other environmental factors to identify modifiable risk environments and at-risk groups to target with interventions.


Asunto(s)
Trastorno Depresivo Mayor , Adulto , Masculino , Humanos , Femenino , Niño , Persona de Mediana Edad , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/psicología , Estudio de Asociación del Genoma Completo , Estudios Transversales , Bancos de Muestras Biológicas , Depresión/genética , Herencia Multifactorial/genética , Reino Unido , Predisposición Genética a la Enfermedad/genética
4.
EBioMedicine ; 79: 104000, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35490552

RESUMEN

BACKGROUND: DNA methylation (DNAm) is associated with time-varying environmental factors that contribute to major depressive disorder (MDD) risk. We sought to test whether DNAm signatures of lifestyle and biochemical factors were associated with MDD to reveal dynamic biomarkers of MDD risk that may be amenable to lifestyle interventions. METHODS: Here, we calculated methylation scores (MS) at multiple p-value thresholds for lifestyle (BMI, smoking, alcohol consumption, and educational attainment) and biochemical (high-density lipoprotein (HDL) and total cholesterol) factors in Generation Scotland (GS) (N=9,502) and in a replication cohort (ALSPACadults, N=565), using CpG sites reported in previous well-powered methylome-wide association studies. We also compared their predictive accuracy for MDD to a MDD MS in an independent GS sub-sample (N=4,432). FINDINGS: Each trait MS was significantly associated with its corresponding phenotype in GS (ßrange=0.089-1.457) and in ALSPAC (ßrange=0.078-2.533). Each MS was also significantly associated with MDD before and after adjustment for its corresponding phenotype in GS (ßrange=0.053-0.145). After accounting for relevant lifestyle factors, MS for educational attainment (ß=0.094) and alcohol consumption (MSp-value<0.01-0.5; ßrange=-0.069-0.083) remained significantly associated with MDD in GS. Smoking (AUC=0.569) and educational attainment (AUC=0.585) MSs could discriminate MDD from controls better than the MDD MS (AUC=0.553) in the independent GS sub-sample. Analyses implicating MDD did not replicate across ALSPAC, although the direction of effect was consistent for all traits when adjusting for the MS corresponding phenotypes. INTERPRETATION: We showed that lifestyle and biochemical MS were associated with MDD before and after adjustment for their corresponding phenotypes (pnominal<0.05), but not when smoking, alcohol consumption, and BMI were also included as covariates. MDD results did not replicate in the smaller, female-only independent ALSPAC cohort (NALSPAC=565; NGS=9,502), potentially due to demographic differences or low statistical power, but effect sizes were consistent with the direction reported in GS. DNAm scores for modifiable MDD risk factors may contribute to disease vulnerability and, in some cases, explain additional variance to their observed phenotypes. FUNDING: Wellcome Trust.


Asunto(s)
Trastorno Depresivo Mayor , Herencia Multifactorial , Estudios de Cohortes , Metilación de ADN , Trastorno Depresivo Mayor/etiología , Trastorno Depresivo Mayor/genética , Epigenoma , Femenino , Estudio de Asociación del Genoma Completo , Humanos
5.
Mol Psychiatry ; 27(3): 1647-1657, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34880450

RESUMEN

Antidepressants are an effective treatment for major depressive disorder (MDD), although individual response is unpredictable and highly variable. Whilst the mode of action of antidepressants is incompletely understood, many medications are associated with changes in DNA methylation in genes that are plausibly linked to their mechanisms. Studies of DNA methylation may therefore reveal the biological processes underpinning the efficacy and side effects of antidepressants. We performed a methylome-wide association study (MWAS) of self-reported antidepressant use accounting for lifestyle factors and MDD in Generation Scotland (GS:SFHS, N = 6428, EPIC array) and the Netherlands Twin Register (NTR, N = 2449, 450 K array) and ran a meta-analysis of antidepressant use across these two cohorts. We found ten CpG sites significantly associated with self-reported antidepressant use in GS:SFHS, with the top CpG located within a gene previously associated with mental health disorders, ATP6V1B2 (ß = -0.055, pcorrected = 0.005). Other top loci were annotated to genes including CASP10, TMBIM1, MAPKAPK3, and HEBP2, which have previously been implicated in the innate immune response. Next, using penalised regression, we trained a methylation-based score of self-reported antidepressant use in a subset of 3799 GS:SFHS individuals that predicted antidepressant use in a second subset of GS:SFHS (N = 3360, ß = 0.377, p = 3.12 × 10-11, R2 = 2.12%). In an MWAS analysis of prescribed selective serotonin reuptake inhibitors, we showed convergent findings with those based on self-report. In NTR, we did not find any CpGs significantly associated with antidepressant use. The meta-analysis identified the two CpGs of the ten above that were common to the two arrays used as being significantly associated with antidepressant use, although the effect was in the opposite direction for one of them. Antidepressants were associated with epigenetic alterations in loci previously associated with mental health disorders and the innate immune system. These changes predicted self-reported antidepressant use in a subset of GS:SFHS and identified processes that may be relevant to our mechanistic understanding of clinically relevant antidepressant drug actions and side effects.


Asunto(s)
Trastorno Depresivo Mayor , Proteínas Gestacionales , Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Epigenoma , Proteínas de Unión al Hemo , Humanos , Sistema Inmunológico , Países Bajos , Proteínas Gestacionales/genética , Escocia
6.
Epigenetics ; 17(10): 1143-1158, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34738878

RESUMEN

A complex interplay of genetic and environmental risk factors influence global brain structural alterations associated with brain health and disease. Epigenome-wide association studies (EWAS) of global brain imaging phenotypes have the potential to reveal the mechanisms of brain health and disease and can lead to better predictive analytics through the development of risk scores.We perform an EWAS of global brain volumes in Generation Scotland using peripherally measured whole blood DNA methylation (DNAm) from two assessments, (i) at baseline recruitment, ~6 years prior to MRI assessment (N = 672) and (ii) concurrent with MRI assessment (N=565). Four CpGs at baseline were associated with global cerebral white matter, total grey matter, and whole-brain volume (Bonferroni p≤7.41×10-8, ßrange = -1.46x10-6 to 9.59 × 10-7). These CpGs were annotated to genes implicated in brain-related traits, including psychiatric disorders, development, and ageing. We did not find significant associations in the meta-analysis of the EWAS of the two sets concurrent with imaging at the corrected level.These findings reveal global brain structural changes associated with DNAm measured ~6 years previously, indicating a potential role of early DNAm modifications in brain structure. Although concurrent DNAm was not associated with global brain structure, the nominally significant findings identified here present a rationale for future investigation of associations between DNA methylation and structural brain phenotypes in larger population-based samples.


Asunto(s)
Metilación de ADN , Epigenoma , Epigénesis Genética , Salud de la Familia , Estudio de Asociación del Genoma Completo/métodos , Fenotipo
7.
Hum Mol Genet ; 31(4): 651-664, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34523677

RESUMEN

The environment and events that we are exposed to in utero, during birth and in early childhood influence our future physical and mental health. The underlying mechanisms that lead to these outcomes are unclear, but long-term changes in epigenetic marks, such as DNA methylation, could act as a mediating factor or biomarker. DNA methylation data were assayed at 713 522 CpG sites from 9537 participants of the Generation Scotland: Scottish Family Health Study, a family-based cohort with extensive genetic, medical, family history and lifestyle information. Methylome-wide association studies of eight early life environment phenotypes and two adult mental health phenotypes (major depressive disorder and brief resilience scale) were conducted using DNA methylation data collected from adult whole blood samples. Two genes involved with different developmental pathways (PRICKLE2, Prickle Planar Cell Polarity Protein 2 and ABI1, Abl-Interactor-1) were annotated to CpG sites associated with preterm birth (P < 1.27 × 10-9). A further two genes important to the development of sensory pathways (SOBP, Sine Oculis Binding Protein Homolog and RPGRIP1, Retinitis Pigmentosa GTPase Regulator Interacting Protein) were annotated to sites associated with low birth weight (P < 4.35 × 10-8). The examination of methylation profile scores and genes and gene-sets annotated from associated CpGs sites found no evidence of overlap between the early life environment and mental health conditions. Birth date was associated with a significant difference in estimated lymphocyte and neutrophil counts. Previous studies have shown that early life environments influence the risk of developing mental health disorders later in life; however, this study found no evidence that this is mediated by stable changes to the methylome detectable in peripheral blood.


Asunto(s)
Trastorno Depresivo Mayor , Nacimiento Prematuro , Proteínas Adaptadoras Transductoras de Señales , Preescolar , Islas de CpG/genética , Proteínas del Citoesqueleto , Metilación de ADN/genética , Epigénesis Genética , Epigenoma , Femenino , Humanos , Recién Nacido , Salud Mental , Embarazo
8.
EBioMedicine ; 74: 103730, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34883445

RESUMEN

BACKGROUND: parent-of-origin effects (POE) play important roles in complex disease and thus understanding their regulation and associated molecular and phenotypic variation are warranted. Previous studies mainly focused on the detection of genomic regions or phenotypes regulated by POE. Understanding whether POE may be modified by environmental or genetic exposures is important for understanding of the source of POE-associated variation, but only a few case studies addressing modifiable POE exist. METHODS: in order to understand this high order of POE regulation, we screened 101 genetic and environmental factors such as 'predicted mRNA expression levels' of DNA methylation/imprinting machinery genes and environmental exposures. POE-mQTL-modifier interaction models were proposed to test the potential of these factors to modify POE at DNA methylation using data from Generation Scotland: The Scottish Family Health Study(N=2315). FINDINGS: a set of vulnerable/modifiable POE-CpGs were identified (modifiable-POE-regulated CpGs, N=3). Four factors, 'lifetime smoking status' and 'predicted mRNA expression levels' of TET2, SIRT1 and KDM1A, were found to significantly modify the POE on the three CpGs in both discovery and replication datasets. We further identified plasma protein and health-related phenotypes associated with the methylation level of one of the identified CpGs. INTERPRETATION: the modifiable POE identified here revealed an important yet indirect path through which genetic background and environmental exposures introduce their effect on DNA methylation, motivating future comprehensive evaluation of the role of these modifiers in complex diseases. FUNDING: NSFC (81971270),H2020-MSCA-ITN(721815), Wellcome (204979/Z/16/Z,104036/Z/14/Z), MRC (MC_UU_00007/10, MC_PC_U127592696), CSO (CZD/16/6,CZB/4/276, CZB/4/710), SFC (HR03006), EUROSPAN (LSHG-CT-2006-018947), BBSRC (BBS/E/D/30002276), SYSU, Arthritis Research UK, NHLBI, NIH.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Epigenómica/métodos , Histona Demetilasas/genética , Sirtuina 1/genética , Islas de CpG , Regulación de la Expresión Génica , Impresión Genómica , Humanos , Estilo de Vida , Fenotipo , Sitios de Carácter Cuantitativo
9.
PLoS Genet ; 17(9): e1009750, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499657

RESUMEN

Variation in obesity-related traits has a genetic basis with heritabilities between 40 and 70%. While the global obesity pandemic is usually associated with environmental changes related to lifestyle and socioeconomic changes, most genetic studies do not include all relevant environmental covariates, so the genetic contribution to variation in obesity-related traits cannot be accurately assessed. Some studies have described interactions between a few individual genes linked to obesity and environmental variables but there is no agreement on their total contribution to differences between individuals. Here we compared self-reported smoking data and a methylation-based proxy to explore the effect of smoking and genome-by-smoking interactions on obesity related traits from a genome-wide perspective to estimate the amount of variance they explain. Our results indicate that exploiting omic measures can improve models for complex traits such as obesity and can be used as a substitute for, or jointly with, environmental records to better understand causes of disease.


Asunto(s)
Índice de Masa Corporal , Metilación de ADN , Genoma Humano , Fumar/genética , Humanos
10.
Genome Med ; 13(1): 1, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397400

RESUMEN

BACKGROUND: The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late onset Alzheimer's disease, whilst the ε2 allele confers protection. Previous studies report differential DNA methylation of APOE between ε4 and ε2 carriers, but associations with epigenome-wide methylation have not previously been characterised. METHODS: Using the EPIC array, we investigated epigenome-wide differences in whole blood DNA methylation patterns between Alzheimer's disease-free APOE ε4 (n = 2469) and ε2 (n = 1118) carriers from the two largest single-cohort DNA methylation samples profiled to date. Using a discovery, replication and meta-analysis study design, methylation differences were identified using epigenome-wide association analysis and differentially methylated region (DMR) approaches. Results were explored using pathway and methylation quantitative trait loci (meQTL) analyses. RESULTS: We obtained replicated evidence for DNA methylation differences in a ~ 169 kb region, which encompasses part of APOE and several upstream genes. Meta-analytic approaches identified DNA methylation differences outside of APOE: differentially methylated positions were identified in DHCR24, LDLR and ABCG1 (2.59 × 10-100 ≤ P ≤ 2.44 × 10-8) and DMRs were identified in SREBF2 and LDLR (1.63 × 10-4 ≤ P ≤ 3.01 × 10-2). Pathway and meQTL analyses implicated lipid-related processes and high-density lipoprotein cholesterol was identified as a partial mediator of the methylation differences in ABCG1 and DHCR24. CONCLUSIONS: APOE ε4 vs. ε2 carrier status is associated with epigenome-wide methylation differences in the blood. The loci identified are located in trans as well as cis to APOE and implicate genes involved in lipid homeostasis.


Asunto(s)
Alelos , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Metilación de ADN/genética , Epigenoma , Colesterol/metabolismo , Ontología de Genes , Heterocigoto , Humanos , Sitios de Carácter Cuantitativo/genética
11.
Alzheimers Dement (Amst) ; 12(1): e12078, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32789163

RESUMEN

INTRODUCTION: Dementia pathogenesis begins years before clinical symptom onset, necessitating the understanding of premorbid risk mechanisms. Here we investigated potential pathogenic mechanisms by assessing DNA methylation associations with dementia risk factors in Alzheimer's disease (AD)-free participants. METHODS: Associations between dementia risk measures (family history, AD genetic risk score [GRS], and dementia risk scores [combining lifestyle, demographic, and genetic factors]) and whole-blood DNA methylation were assessed in discovery and replication samples (n = ~400 to ~5000) from Generation Scotland. RESULTS: AD genetic risk and two dementia risk scores were associated with differential methylation. The GRS associated predominantly with methylation differences in cis but also identified a genomic region implicated in Parkinson disease. Loci associated with dementia risk scores were enriched for those previously associated with body mass index and alcohol consumption. DISCUSSION: Dementia risk measures show widespread association with blood-based methylation, generating several hypotheses for assessment by future studies.

12.
PLoS Genet ; 16(7): e1008785, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32628676

RESUMEN

To efficiently transform genetic associations into drug targets requires evidence that a particular gene, and its encoded protein, contribute causally to a disease. To achieve this, we employ a three-step proteome-by-phenome Mendelian Randomization (MR) approach. In step one, 154 protein quantitative trait loci (pQTLs) were identified and independently replicated. From these pQTLs, 64 replicated locally-acting variants were used as instrumental variables for proteome-by-phenome MR across 846 traits (step two). When its assumptions are met, proteome-by-phenome MR, is equivalent to simultaneously running many randomized controlled trials. Step 2 yielded 38 proteins that significantly predicted variation in traits and diseases in 509 instances. Step 3 revealed that amongst the 271 instances from GeneAtlas (UK Biobank), 77 showed little evidence of pleiotropy (HEIDI), and 92 evidence of colocalization (eCAVIAR). Results were wide ranging: including, for example, new evidence for a causal role of tyrosine-protein phosphatase non-receptor type substrate 1 (SHPS1; SIRPA) in schizophrenia, and a new finding that intestinal fatty acid binding protein (FABP2) abundance contributes to the pathogenesis of cardiovascular disease. We also demonstrated confirmatory evidence for the causal role of four further proteins (FGF5, IL6R, LPL, LTA) in cardiovascular disease risk.


Asunto(s)
Enfermedades Cardiovasculares/genética , Análisis de la Aleatorización Mendeliana , Proteoma/genética , Esquizofrenia/genética , Antígenos de Diferenciación/genética , Enfermedades Cardiovasculares/patología , Proteínas de Unión a Ácidos Grasos/genética , Femenino , Factor 5 de Crecimiento de Fibroblastos/genética , Estudios de Asociación Genética/métodos , Humanos , Lipoproteína Lipasa/genética , Linfotoxina-alfa/genética , Masculino , Sitios de Carácter Cuantitativo , Receptores Inmunológicos/genética , Receptores de Interleucina-6/genética , Esquizofrenia/patología
13.
Proc Natl Acad Sci U S A ; 116(38): 19064-19070, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31481615

RESUMEN

Britain and Ireland are known to show population genetic structure; however, large swathes of Scotland, in particular, have yet to be described. Delineating the structure and ancestry of these populations will allow variant discovery efforts to focus efficiently on areas not represented in existing cohorts. Thus, we assembled genotype data for 2,554 individuals from across the entire archipelago with geographically restricted ancestry, and performed population structure analyses and comparisons to ancient DNA. Extensive geographic structuring is revealed, from broad scales such as a NE to SW divide in mainland Scotland, through to the finest scale observed to date: across 3 km in the Northern Isles. Many genetic boundaries are consistent with Dark Age kingdoms of Gaels, Picts, Britons, and Norse. Populations in the Hebrides, the Highlands, Argyll, Donegal, and the Isle of Man show characteristics of isolation. We document a pole of Norwegian ancestry in the north of the archipelago (reaching 23 to 28% in Shetland) which complements previously described poles of Germanic ancestry in the east, and "Celtic" to the west. This modern genetic structure suggests a northwestern British or Irish source population for the ancient Gaels that contributed to the founding of Iceland. As rarer variants, often with larger effect sizes, become the focus of complex trait genetics, more diverse rural cohorts may be required to optimize discoveries in British and Irish populations and their considerable global diaspora.


Asunto(s)
ADN Antiguo/análisis , Etnicidad/genética , Variación Genética , Genética de Población , Genoma Humano , Humanos , Irlanda , Islas , Escocia
14.
Nat Commun ; 10(1): 2069, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043600

RESUMEN

In the original version of this Article, the legend in the upper panel of Figure 2 incorrectly read 'paternal imprinting' and should have read 'maternal imprinting'. This has been corrected in both the PDF and HTML versions of the Article.

15.
Nat Commun ; 10(1): 1383, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30918249

RESUMEN

Parent-of-origin effects (POE) exist when there is differential expression of alleles inherited from the two parents. A genome-wide scan for POE on DNA methylation at 639,238 CpGs in 5,101 individuals identifies 733 independent methylation CpGs potentially influenced by POE at a false discovery rate ≤ 0.05 of which 331 had not previously been identified. Cis and trans methylation quantitative trait loci (mQTL) regulate methylation variation through POE at 54% (399/733) of the identified POE-influenced CpGs. The combined results provide strong evidence for previously unidentified POE-influenced CpGs at 171 independent loci. Methylation variation at 14 of the POE-influenced CpGs is associated with multiple metabolic traits. A phenome-wide association analysis using the POE mQTL SNPs identifies a previously unidentified imprinted locus associated with waist circumference. These results provide a high resolution population-level map for POE on DNA methylation sites, their local and distant regulators and potential consequences for complex traits.


Asunto(s)
Metilación de ADN/genética , Regulación de la Expresión Génica , Impresión Genómica/genética , Sitios de Carácter Cuantitativo/genética , Adulto , Islas de CpG , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Escocia
16.
Mol Psychiatry ; 23(12): 2347-2362, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29321673

RESUMEN

Pedigree-based analyses of intelligence have reported that genetic differences account for 50-80% of the phenotypic variation. For personality traits these effects are smaller, with 34-48% of the variance being explained by genetic differences. However, molecular genetic studies using unrelated individuals typically report a heritability estimate of around 30% for intelligence and between 0 and 15% for personality variables. Pedigree-based estimates and molecular genetic estimates may differ because current genotyping platforms are poor at tagging causal variants, variants with low minor allele frequency, copy number variants, and structural variants. Using ~20,000 individuals in the Generation Scotland family cohort genotyped for ~700,000 single-nucleotide polymorphisms (SNPs), we exploit the high levels of linkage disequilibrium (LD) found in members of the same family to quantify the total effect of genetic variants that are not tagged in GWAS of unrelated individuals. In our models, genetic variants in low LD with genotyped SNPs explain over half of the genetic variance in intelligence, education, and neuroticism. By capturing these additional genetic effects our models closely approximate the heritability estimates from twin studies for intelligence and education, but not for neuroticism and extraversion. We then replicated our finding using imputed molecular genetic data from unrelated individuals to show that ~50% of differences in intelligence, and ~40% of the differences in education, can be explained by genetic effects when a larger number of rare SNPs are included. From an evolutionary genetic perspective, a substantial contribution of rare genetic variants to individual differences in intelligence, and education is consistent with mutation-selection balance.


Asunto(s)
Inteligencia/genética , Personalidad/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Estudios de Cohortes , Familia , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Genotipo , Humanos , Desequilibrio de Ligamiento/genética , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Escocia
17.
Wellcome Open Res ; 3: 11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30756089

RESUMEN

Background: Stressful life events (SLEs) and neuroticism are risk factors for major depressive disorder (MDD). However, SLEs and neuroticism are heritable and genetic risk for SLEs is correlated with risk for MDD. We sought to investigate the genetic and environmental contributions to SLEs in a family-based sample, and quantify genetic overlap with MDD and neuroticism. Methods: A subset of Generation Scotland: the Scottish Family Health Study (GS), consisting of 9618 individuals with information on MDD, past 6 month SLEs, neuroticism and genome-wide genotype data was used in the present study. We estimated the heritability of SLEs using GCTA software. The environmental contribution to SLEs was assessed by modelling familial, couple and sibling components. Using polygenic risk scores (PRS) and LD score regression (LDSC) we analysed the genetic overlap between MDD, neuroticism and SLEs. Results: Past 6-month life events were positively correlated with lifetime MDD status (ß=0.21, r 2=1.1%, p=2.5 x 10 -25) and neuroticism (ß =0.13, r 2=1.9%, p=1.04 x 10 -37) at the phenotypic level.  Common SNPs explained 8% of the phenotypic variance in personal life events (those directly affecting the individual) (S.E.=0.03, p= 9 x 10 -4). A significant effect of couple environment was detected accounting for 13% (S.E.=0.03, p=0.016) of the phenotypic variation in SLEs. PRS analyses found that reporting more SLEs was associated with a higher polygenic risk for MDD (ß =0.05, r 2=0.3%, p=3 x 10 -5), but not a higher polygenic risk for neuroticism. LDSC showed a significant genetic correlation between SLEs and both MDD (r G=0.33, S.E.=0.08 ) and neuroticism (r G=0.15, S.E.=0.07). Conclusions: These findings suggest that SLEs should not be regarded solely as environmental risk factors for MDD as they are partially heritable and this heritability is shared with risk for MDD and neuroticism. Further work is needed to determine the causal direction and source of these associations.

18.
Nat Commun ; 8(1): 801, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28986520

RESUMEN

Regional differences in health-related phenotypes have been detected between and within countries. In Scotland, regions differ for a variety of health-related traits and display differences in mean lifespan of up to 7.5 years. Both genetics and lifestyle differences are potential causes of this variation. Using data on obesity-related traits of ~11,000 Scottish individuals with genome-wide genetic information and records of lifestyle and socioeconomic factors, we explored causes of regional variation by using models that incorporate genetic and environmental information jointly. We found that variation between individuals within regions showed substantial influence of both genetic variation and family environment. Regional variation for most obesity traits was associated with lifestyle and socioeconomic variables, such as smoking, diet and deprivation which are potentially modifiable. There was limited evidence that regional differences were of genetic origin. This has important implications for healthcare policies, suggesting that inequalities can be tackled with appropriate social and economic interventions.Health-related traits are known to vary geographically. Here, Amador and colleagues show that regional variation of obesity-related traits in a Scottish population is influenced more by lifestyle differences than it is by genetic differences.


Asunto(s)
Interacción Gen-Ambiente , Estilo de Vida , Obesidad/epidemiología , Factores Socioeconómicos , Tejido Adiposo , Composición Corporal , Estatura , Índice de Masa Corporal , Peso Corporal , Colesterol/sangre , HDL-Colesterol/sangre , Creatinina/sangre , Impedancia Eléctrica , Femenino , Política de Salud , Humanos , Masculino , Obesidad/sangre , Obesidad/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Escocia/epidemiología , Circunferencia de la Cintura , Relación Cintura-Cadera
19.
Genome Med ; 9(1): 23, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28270201

RESUMEN

BACKGROUND: The Generation Scotland: Scottish Family Health Study (GS:SFHS) is a family-based population cohort with DNA, biological samples, socio-demographic, psychological and clinical data from approximately 24,000 adult volunteers across Scotland. Although data collection was cross-sectional, GS:SFHS became a prospective cohort due to of the ability to link to routine Electronic Health Record (EHR) data. Over 20,000 participants were selected for genotyping using a large genome-wide array. METHODS: GS:SFHS was analysed using genome-wide association studies (GWAS) to test the effects of a large spectrum of variants, imputed using the Haplotype Research Consortium (HRC) dataset, on medically relevant traits measured directly or obtained from EHRs. The HRC dataset is the largest available haplotype reference panel for imputation of variants in populations of European ancestry and allows investigation of variants with low minor allele frequencies within the entire GS:SFHS genotyped cohort. RESULTS: Genome-wide associations were run on 20,032 individuals using both genotyped and HRC imputed data. We present results for a range of well-studied quantitative traits obtained from clinic visits and for serum urate measures obtained from data linkage to EHRs collected by the Scottish National Health Service. Results replicated known associations and additionally reveal novel findings, mainly with rare variants, validating the use of the HRC imputation panel. For example, we identified two new associations with fasting glucose at variants near to Y_RNA and WDR4 and four new associations with heart rate at SNPs within CSMD1 and ASPH, upstream of HTR1F and between PROKR2 and GPCPD1. All were driven by rare variants (minor allele frequencies in the range of 0.08-1%). Proof of principle for use of EHRs was verification of the highly significant association of urate levels with the well-established urate transporter SLC2A9. CONCLUSIONS: GS:SFHS provides genetic data on over 20,000 participants alongside a range of phenotypes as well as linkage to National Health Service laboratory and clinical records. We have shown that the combination of deeper genotype imputation and extended phenotype availability make GS:SFHS an attractive resource to carry out association studies to gain insight into the genetic architecture of complex traits.


Asunto(s)
Haplotipos , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Glucemia/genética , Estudios Transversales , Registros Electrónicos de Salud , Ayuno , Femenino , Genes , Estudio de Asociación del Genoma Completo , Frecuencia Cardíaca/genética , Humanos , Masculino , Estudios Prospectivos , Escocia , Ácido Úrico/sangre , Población Blanca/genética
20.
J Alzheimers Dis ; 57(1): 275-283, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28222519

RESUMEN

Stratification by genetic risk factors for Alzheimer's disease (AD) may help identify groups with the greatest disease risk. Biological changes that cause late-onset AD are likely to occur years, if not decades prior to diagnosis. Here, we select a subset of the Generation Scotland: Scottish Family Health Study cohort in a likely preclinical age-range of 60-70 years (subset n = 3,495 with cognitive and genetic data). We test for cognitive differences by polygenic risk scores for AD. The polygenic scores are constructed using all available SNPs, excluding those within a 500 kb distance of the APOE locus. Additive and multiplicative effects of APOE status on these associations are investigated. Small memory decrements were observed in those with high polygenic risk scores for AD (standardized beta -0.04, p = 0.020). These associations were independent of APOE status. There was no difference in AD polygenic scores across APOE haplotypes (p = 0.72). Individuals with high compared to low polygenic risk scores for AD (top and bottom 5% of the distribution) show cognitive decrements, albeit much smaller than for APOE ɛ4ɛ4 compared to ɛ3ɛ3 individuals (2.3 versus 3.5 fewer points on the processing speed test, and 1.8 versus 2.8 fewer points on the memory test). Polygenic risk scores for AD may help identify older individuals at greatest risk of cognitive decline and preclinical AD.


Asunto(s)
Enfermedad de Alzheimer/clasificación , Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad , Herencia Multifactorial , Anciano , Apolipoproteínas E/genética , Disfunción Cognitiva/clasificación , Disfunción Cognitiva/genética , Estudios de Cohortes , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad , Pruebas Neuropsicológicas , Polimorfismo de Nucleótido Simple , Escocia , Autoinforme
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA