Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37242615

RESUMEN

Tacrolimus (Tac) is a calcineurin inhibitor commonly used as an immunosuppressor after solid organ transplantation. However, Tac may induce hypertension, nephrotoxicity, and an increase in aldosterone levels. The activation of the mineralocorticoid receptor (MR) is related to the proinflammatory status at the renal level. It modulates the vasoactive response as they are expressed on vascular smooth muscle cells (SMC). In this study, we investigated whether MR is involved in the renal damage generated by Tac and if the MR expressed in SMC is involved. Littermate control mice and mice with targeted deletion of the MR in SMC (SMC-MR-KO) were administered Tac (10 mg/Kg/d) for 10 days. Tac increased the blood pressure, plasma creatinine, expression of the renal induction of the interleukin (IL)-6 mRNA, and expression of neutrophil gelatinase-associated lipocalin (NGAL) protein, a marker of tubular damage (p < 0.05). Our study revealed that co-administration of spironolactone, an MR antagonist, or the absence of MR in SMC-MR-KO mice mitigated most of the unwanted effects of Tac. These results enhance our understanding of the involvement of MR in SMC during the adverse reactions of Tac treatment. Our findings provided an opportunity to design future studies considering the MR antagonism in transplanted subjects.

2.
Front Endocrinol (Lausanne) ; 13: 1006790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387895

RESUMEN

In recent studies, primary aldosteronism (PA) has been reported as the most common etiology for secondary hypertension of endocrine origin, accounting for approximately 10% of cases. In PA, excess aldosterone production can lead to deleterious effects at the cardiovascular (CV) and renal levels by activating mineralocorticoid receptors, which involves an increase in pro-inflammatory and pro-fibrotic mediators. Among these mediators, neutrophil gelatinase-associated lipocalin (NGAL), a secretion glycoprotein belonging to the lipocalin superfamily, has been closely linked to CV and renal damage in several pathological conditions. Because NGAL can be detected in biofluids such as plasma and urine, it has been proposed as a damage biomarker for target tissues and has also been studied for its role in hypertension and associated with PA. NGAL is produced by many different cell types, can be carried on extracellular vesicles, and is modulated by microRNAs, which would support its use as a biomarker for endocrine hypertension due to PA. Over the last decade, studies have shown that NGAL is necessary for the development of aldosterone-induced hypertension and that is associated with end-organ damage. In addition, it has been proposed that some mechanisms are dependent on the activation of immune cells, such as dendritic cells and macrophages, where the release of specific cytokines (i.e., interleukin [IL]-23) or chemokines (i.e., CCL-5) induced by aldosterone would depend on NGAL. Subsequently, this activates the T helper (Th) lymphocytes, such as Th17 and Th2, resulting in CV and renal fibrosis due to the high aldosterone levels. Although the immune system has been closely associated with essential hypertension, its participation in endocrine hypertension has not been fully elucidated. This review discusses the link between NGAL and endocrine hypertension, particularly in the context of PA, and their possible regulators and mechanisms, with a focus on its role as an immunomodulator.


Asunto(s)
Enfermedades de las Glándulas Suprarrenales , Hipertensión , Humanos , Lipocalina 2/metabolismo , Aldosterona , Hipertensión/etiología , Factores Inmunológicos , Fibrosis , Biomarcadores
3.
Front Cardiovasc Med ; 8: 644797, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179130

RESUMEN

Diabetes mellitus (DM) causes high glucose (HG) levels in the plasma and urine. The (pro)renin receptor (PRR) is a key regulator of renal Na+ handling. PRR is expressed in intercalated (IC) cells of the collecting duct (CD) and binds renin to promote angiotensin (Ang) II formation, thereby contributing to Na+ reabsorption. In DM, the Kreb's cycle is in a state of suppression in most tissues. However, in the CD, expression of glucose transporters is augmented, boosting the Kreb's cycle and consequently causing α-ketoglutarate (αKG) accumulation. The αKG receptor 1 (OXGR1) is a Gq-coupled receptor expressed on the apical membrane of IC cells of the CD. We hypothesize that HG causes αKG secretion and activation of OXGR1, which increases PRR expression in CD cells. This effect then promotes intratubular AngII formation and Na+ reabsorption. To test this hypothesis, streptozotocin (STZ)-induced diabetic mice were treated with or without montelukast (ML), an OXGR1 antagonist, for 6 days. STZ mice had higher urinary αKG and PRR expression along with augmented urinary AngII levels and Na+ retention. Treatment with ML prevented all these effects. Similarly, primary cultured inner medullary CD cells treated with HG showed increased PRR expression, while OXGR1 antagonist prevented this effect. αKG increases PRR expression, while treatments with ML, PKC inhibition, or intracellular Ca2+ depletion impair this effect. In silico analysis suggested that αKG binds to mouse OXGR1. These results indicate that HG conditions promote increased levels of intratubular αKG and OXGR1-dependent PRR upregulation, which impact AngII formation and Na+ reabsorption.

4.
Antioxidants (Basel) ; 10(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800425

RESUMEN

Renal diseases are a global health concern, and nearly 24% of kidney disease patients are overweight or obese. Particularly, increased body mass index has been correlated with oxidative stress and urinary albumin excretion in kidney disease patients, also contributing to increased cardiovascular risk. Albumin is the main plasma protein and is able to partially cross the glomerular filtration barrier, being reabsorbed mainly by the proximal tubule through different mechanisms. However, it has been demonstrated that albumin suffers different posttranslational modifications, including oxidation, which appears to be tightly linked to kidney damage progression and is increased in obese patients. Plasma-oxidized albumin levels correlate with a decrease in estimated glomerular filtration rate and an increase in blood urea nitrogen in patients with chronic kidney disease. Moreover, oxidized albumin in kidney disease patients is independently correlated with higher plasma levels of transforming growth factor beta (TGF-ß1), tumor necrosis factor (TNF-α), and interleukin (IL)-1ß and IL-6. In addition, oxidized albumin exerts a direct effect on neutrophils by augmenting the levels of neutrophil gelatinase-associated lipocalin, a well-accepted biomarker for renal damage in patients and in different experimental settings. Moreover, it has been suggested that albumin oxidation occurs at early stages of chronic kidney disease, accelerating the patient requirements for dialytic treatment during disease progression. In this review, we summarize the evidence supporting the role of overweight- and obesity-induced oxidative stress as a critical factor for the progression of renal disease and cardiovascular morbimortality through albumin oxidation.

5.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198361

RESUMEN

It is well accepted that the immune system and some cells from adaptive and innate immunity are necessary for the initiation/perpetuation of arterial hypertension (AH). However, whether neutrophils are part of this group remains debatable. There is evidence showing that the neutrophil/lymphocyte ratio correlates with AH and is higher in non-dipper patients. On the other hand, the experimental neutrophil depletion in mice reduces basal blood pressure. Nevertheless, their participation in AH is still controversial. Apparently, neutrophils may modulate the microenvironment in blood vessels by increasing oxidative stress, favoring endothelial disfunction. In addition, neutrophils may contribute to the tissue infiltration of immune cells, secreting chemoattractant chemokines/cytokines and promoting the proinflammatory phenotype, leading to AH development. In this work, we discuss the potential role of neutrophils in AH by analyzing different mechanisms proposed from clinical and basic studies, with a perspective on cardiovascular and renal damages relating to the hypertensive phenotype.


Asunto(s)
Hipertensión/metabolismo , Neutrófilos/fisiología , Inmunidad Adaptativa , Animales , Presión Sanguínea , Enfermedades Cardiovasculares/complicaciones , Quimiocinas/metabolismo , Fibrosis/patología , Humanos , Inmunidad Innata , Inflamación , Enfermedades Renales/complicaciones , Ratones , Neutrófilos/citología , Estrés Oxidativo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
6.
Front Pharmacol ; 10: 1314, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803050

RESUMEN

Chronic kidney disease (CKD) is characterized by renal dysfunction, which is a common feature of other major diseases, such as hypertension and diabetes. Unilateral ureteral obstruction (UUO) has been used as a model of CKD in experimental animals and consists of total obstruction of one kidney ureter. The UUO decreases renal blood flow, which promotes the synthesis of renin in the juxtaglomerular apparatus, the first step in renin-angiotensin system (RAS) cascade. RAS induces inflammation and remodeling, along with reduced renal function. However, it remains unknown whether intrarenal RAS (iRAS) is activated in early stages of CKD. Our objective was to characterize different iRAS components in the renal cortex and in the medulla in an early phase of UUO. Male C57BL/6 mice (8-12 weeks old) were subjected to UUO in the left kidney, or to sham surgery, and were euthanized after 7 days (n = 5/group). Renal function, renal inflammatory/remodeling processes, and iRAS expression were evaluated. UUO increased plasma creatinine, right renal hypertrophy (9.08 ± 0.31, P < 0.05 vs. Sham), and tubular dilatation in the left kidney cortex (42.42 ± 8.19µm, P < 0.05 vs. Sham). This correlated with the increased mRNA of IL-1ß (1.73 ± 0.14, P < 0.01 vs. Sham, a pro-inflammatory cytokine) and TGF-ß1 (1.76 ± 0.10, P < 0.001 vs. Sham, a pro-fibrotic marker). In the renal cortex of the left kidney, UUO increased the mRNA and protein levels of renin (in 35% and 28%, respectively, P < 0.05 vs. Sham). UUO decreased mRNA and protein levels for the (pro)renin receptor in the renal medulla (0.67 ± 0.036 and 0.88 ± 0.028, respectively, P < 0.05 vs. Sham). Our results suggest that modulation of iRAS components depends on renal localization and occurs in parallel with remodeling and pro-inflammatory/pro-fibrotic mechanisms.

7.
J Hypertens ; 37(7): 1482-1492, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31033725

RESUMEN

BACKGROUND: Adaptive immunity is crucial in cardiovascular and renal inflammation/fibrosis upon hyperactivation of mineralocorticoid receptor. We have previously demonstrated that dendritic cells can respond to mineralocorticoid receptor activation, and the neutrophil gelatinase-associated lipocalin (NGAL) in dendritic cells is highly increased during aldosterone (Aldo)/mineralocorticoid receptor-dependent cardiovascular damage. However, the interrelationship among dendritic cells, target organs inflammation/fibrosis induced by mineralocorticoid receptor, and NGAL-dependence remains unknown. OBJECTIVE: We studied the role of dendritic cells in mineralocorticoid receptor-dependent tissue remodeling and whether NGAL can modulate the inflammatory response of dendritic cells after mineralocorticoid receptor activation. METHODS: Cardiovascular and renal remodeling induced by Aldo and high-salt diet [nephrectomy-Aldo-salt (NAS) model] were analyzed in CD11c.DOG mice, a model which allows dendritic cells ablation by using diphtheria toxin. In addition, in-vitro studies in NGAL-knock out dendritic cells were performed to determine the immunomodulatory role of NGAL upon Aldo treatment. RESULTS: The ablation of dendritic cells prevented the development of cardiac hypertrophy, perivascular fibrosis, and the overexpression of NGAL, brain natriuretic peptide, and two profibrotic factors induced by NAS: collagen 1A1 and connective tissue growth factor. We determined that dendritic cells were not required to prevent renal hypertrophy/fibrosis induced by NAS. Between different immune cells analyzed, we observed that NGAL abundance was higher in antigen-presenting cells, while in-vitro studies showed that mineralocorticoid receptor stimulation in dendritic cells favored NGAL and IL-23 expression (p19 and p40 subunits), which are involved in the development of fibrosis and the Th17-driven response, respectively. CONCLUSION: NGAL produced by dendritic cells may play a pivotal role in the activation of adaptive immunity that leads to cardiovascular fibrosis during mineralocorticoids excess.


Asunto(s)
Sistema Cardiovascular/metabolismo , Células Dendríticas/metabolismo , Lipocalina 2/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Animales , Antígenos CD11/metabolismo , Cardiomegalia , Técnicas de Cocultivo , Femenino , Fibrosis , Hiperaldosteronismo , Inflamación , Subunidad p19 de la Interleucina-23/metabolismo , Riñón/metabolismo , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptido Natriurético Encefálico/metabolismo , Cloruro de Sodio Dietético/metabolismo , Linfocitos T/citología
8.
Hypertension ; 71(4): 709-718, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29378857

RESUMEN

Increasing evidence shows that antigen-presenting cells (APCs) are involved in the development of inflammation associated to hypertension. However, the potential role of APCs in the modulation of renal sodium transport has not been addressed. We hypothesized that APCs participate in renal sodium transport and, thus, development of high blood pressure in response to angiotensin II plus a high-salt diet. Using transgenic mice that allow the ablation of CD11chigh APCs, we studied renal sodium transport, the intrarenal renin-angiotensin system components, blood pressure, and cardiac/renal tissue damage in response to angiotensin II plus a high-salt diet. Strikingly, we found that APCs are required for the development of hypertension and that the ablation/restitution of APCs produces rapid changes in the blood pressure in mice with angiotensin II plus a high-salt diet. Moreover, APCs were necessary for the induction of intrarenal renin-angiotensin system components and affected the modulation of natriuresis and tubular sodium transporters. Consistent with the prevention of hypertension, the ablation of APCs also prevented cardiac hypertrophy and the induction of several indicators of renal and cardiac damage. Thus, our findings indicate a prominent role of APCs as modulators of blood pressure by mechanisms including renal sodium handling, with kinetics that suggest the involvement of tubular cell functions in addition to the modulation of inflammation and adaptive immune response.


Asunto(s)
Angiotensina II/metabolismo , Células Presentadoras de Antígenos/inmunología , Presión Sanguínea/inmunología , Antígeno CD11c/inmunología , Hipertensión , Cloruro de Sodio Dietético/metabolismo , Animales , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/inmunología , Hipertensión/inmunología , Hipertensión/fisiopatología , Hipertensión/prevención & control , Inflamación , Transporte Iónico/inmunología , Ratones , Ratones Transgénicos , Células Mieloides/inmunología
9.
Artículo en Inglés | MEDLINE | ID: mdl-28607023

RESUMEN

The vancomycin loading dose (LD) of 25 to 30 mg/kg is a frequently practiced strategy to achieve effective concentrations from the first-treatment dose. However, considering only the body weight for dosing might be inadequate in critically ill patients due to pharmacokinetics changes. We sought to assess achieving optimal trough serum levels of vancomycin and AUC0-24/MIC in the first 24 h of treatment by using an LD based on population pharmacokinetic parameters of critically ill patients. We performed a concurrent cohort study over 22 months of patients with severe sepsis who received intravenous vancomycin. The patients were treated with three different strategies to initiate vancomycin: without an LD (group A), with an LD of 25 to 30 mg/kg (group B), and with an LD based on population pharmacokinetic parameters of the critically ill patient (group C). An optimal trough serum concentration was achieved in 5, 9, and 83% of patients in groups A, B, and C, respectively. The number of patients that reached optimal AUC0-24 was 2 of 18 (11%), 5 of 11 (46%), and 11 of 12 (92%) in groups A, B, and C, respectively. The statistical analysis for both parameters revealed significant differences in group C with respect to other groups. The administration of the LD calculated from population pharmacokinetic parameters from the beginning of therapy is a more efficient strategy to obtain adequate trough serum concentrations and AUC0-24/MIC in critical patients.


Asunto(s)
Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Sepsis/tratamiento farmacológico , Infecciones Estafilocócicas/tratamiento farmacológico , Vancomicina/farmacocinética , Vancomicina/uso terapéutico , Estudios de Cohortes , Cuidados Críticos/métodos , Enfermedad Crítica , Humanos , Sepsis/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Vancomicina/sangre
10.
Kidney Int ; 89(2): 354-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26422501

RESUMEN

Calcineurin inhibitors such as cyclosporine A (CsA) are still commonly used after renal transplantation, despite CsA--induced nephrotoxicity (CIN), which is partly related to vasoactive mechanisms. The mineralocorticoid receptor (MR) is now recognized as a key player in the control of vascular tone, and both endothelial cell- and vascular smooth muscle cell (SMC)-MR modulate the vasoactive responses to vasodilators and vasoconstrictors. Here we tested whether vascular MR is involved in renal hemodynamic changes induced by CsA. The relative contribution of vascular MR in acute CsA treatment was evaluated using mouse models with targeted deletion of MR in endothelial cell or SMC. Results indicate that MR expressed in SMC, but not in endothelium, contributes to the increase of plasma urea and creatinine, the appearance of isometric tubular vacuolization, and overexpression of a kidney injury biomarker (neutrophil gelatinase--associated lipocalin) after CsA treatment. Inactivation of MR in SMC blunted CsA--induced phosphorylation of contractile proteins. Finally, the in vivo increase of renal vascular resistance induced by CsA was blunted when MR was deleted from SMC cells, and this was associated with decreased L-type Ca2D channel activity. Thus, our study provides new insights into the role of vascular MR in renal hemodynamics during acute CIN, and provides rationale for clinical studies of MR antagonism to manage the side effects of calcineurin inhibitors.


Asunto(s)
Ciclosporina/efectos adversos , Inmunosupresores/efectos adversos , Enfermedades Renales/etiología , Receptores de Mineralocorticoides/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Endotelio Vascular/metabolismo , Femenino , Técnicas de Inactivación de Genes , Enfermedades Renales/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Resistencia Vascular
11.
Hypertension ; 63(4): 797-803, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24420551

RESUMEN

Adaptive immune response has been implicated in inflammation and fibrosis as a result of exposure to mineralocorticoids and a high-salt diet. We hypothesized that in mineralocorticoid-salt-induced hypertension, activation of the mineralocorticoid receptor alters the T-helper 17 lymphocyte (Th17)/regulatory T-lymphocyte/interleukin-17 (IL-17) pathway, contributing to cardiac and renal damage. We studied the inflammatory response and tissue damage in rats treated with deoxycorticosterone acetate and high-salt diet (DOCA-salt), with or without mineralocorticoid receptor inhibition by spironolactone. To determine whether Th17 differentiation in DOCA-salt rats is caused by hypertension per se, DOCA-salt rats received antihypertensive therapy. In addition, to evaluate the pathogenic role of IL-17 in hypertension and tissue damage, we studied the effect of IL-17 blockade with a specific antibody (anti-IL-17). We found activation of Th17 cells and downregulation of forkhead box P3 mRNA in peripheral tissues, heart, and kidneys of DOCA-salt-treated rats. Spironolactone treatment prevented Th17 cell activation and increased numbers of forkhead box P3-positive cells relative to DOCA-salt rats. Antihypertensive therapy did not ameliorate Th17 activation in rats. Treatment of DOCA-salt rats with anti-IL-17 significantly reduced arterial hypertension as well as expression of profibrotic and proinflammatory mediators and collagen deposits in the heart and kidney. We conclude that mineralocorticoid receptor activation alters the Th17/regulatory T-lymphocyte/IL-17 pathway in mineralocorticoid-dependent hypertension as part of an inflammatory mechanism contributing to fibrosis.


Asunto(s)
Acetato de Desoxicorticosterona/efectos adversos , Cardiopatías/prevención & control , Hipertensión/inducido químicamente , Enfermedades Renales/prevención & control , Espironolactona/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Acetato de Desoxicorticosterona/farmacología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Factores de Transcripción Forkhead/efectos de los fármacos , Factores de Transcripción Forkhead/fisiología , Cardiopatías/etiología , Cardiopatías/fisiopatología , Hipertensión/complicaciones , Hipertensión/fisiopatología , Interleucina-17/antagonistas & inhibidores , Interleucina-17/inmunología , Interleucina-17/fisiología , Enfermedades Renales/etiología , Enfermedades Renales/fisiopatología , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Mineralocorticoides/efectos de los fármacos , Receptores de Mineralocorticoides/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Linfocitos T Reguladores/patología , Células Th17/patología
12.
J Hypertens ; 29(9): 1684-92, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21826023

RESUMEN

High plasmatic levels of aldosterone cause hypertension and contribute to progressive organ damage to the heart, vasculature, and kidneys. Recent studies have demonstrated a role for the immune system in these pathological processes. Aldosterone promotes an inflammatory state characterized by vascular infiltration of immune cells, reactive oxidative stress, and proinflammatory cytokine production. Further, cells of the adaptive immune system, such as T cells, seem to participate in the genesis of mineralocorticoid hormone-induced hypertension. In addition, the observation that aldosterone can promote CD4⁺ T-cell activation and Th17 polarization suggests that this hormone could contribute to the onset of autoimmunity. Here we discuss recent evidence supporting a significant involvement of the immune system, especially adaptive immunity, in the genesis of hypertension and organ damage induced by primary aldosteronism. In addition, possible new therapeutic approaches consisting of immunomodulator drugs to control exacerbated immune responses triggered by elevated aldosterone concentrations will be described.


Asunto(s)
Aldosterona/fisiología , Inmunidad/fisiología , Animales , Humanos
13.
J Immunol ; 184(1): 191-202, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19949098

RESUMEN

Excessive production of aldosterone leads to the development of hypertension and cardiovascular disease by generating an inflammatory state that can be promoted by T cell immunity. Because nature and intensity of T cell responses is controlled by dendritic cells (DCs), it is important to evaluate whether the function of these cells can be modulated by aldosterone. In this study we show that aldosterone augmented the activation of CD8(+) T cells in a DC-dependent fashion. Consistently, the mineralocorticoid receptor was expressed by DCs, which showed activation of MAPK pathway and secreted IL-6 and TGF-beta in response to aldosterone. In addition, DCs stimulated with aldosterone impose a Th17 phenotype to CD4(+) T cells, which have recently been associated with the promotion of inflammatory and autoimmune diseases. Accordingly, we observed that aldosterone enhances the progression of experimental autoimmune encephalomyelitis, an autoimmune disease promoted by Th17 cells. In addition, blockade of the mineralocorticoid receptor prevented all aldosterone effects on DCs and attenuated experimental autoimmune encephalomyelitis development in aldosterone-treated mice. Our data suggest that modulation of DC function by aldosterone enhances CD8(+) T cell activation and promotes Th17-polarized immune responses, which might contribute to the inflammatory damage leading to hypertension and cardiovascular disease.


Asunto(s)
Aldosterona/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Interleucina-17/inmunología , Activación de Linfocitos/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Autoinmunidad , Western Blotting , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Proteínas Quinasas Activadas por Mitógenos/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...