Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Total Environ ; 737: 140399, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783877

RESUMEN

Advanced onsite wastewater treatment systems (OWTS) designed to remove nitrogen from residential wastewater play an important role in protecting environmental and public health. Nevertheless, the microbial processes involved in treatment produce greenhouse gases (GHGs) that contribute to global climate change, including CO2, CH4, N2O. We measured GHG emissions from 27 advanced N-removal OWTS in the towns of Jamestown and Charlestown, Rhode Island, USA, and assessed differences in flux based on OWTS technology, home occupancy (year-round vs. seasonal), and zone within the system (oxic vs. anoxic/hypoxic). We also investigated the relationship between flux and wastewater properties. Flux values for CO2, CH4, and N2O ranged from -0.44 to 61.8, -0.0029 to 25.3, and -0.02 to 0.23 µmol GHG m-2 s-1, respectively. CO2 and N2O flux varied among technologies, whereas occupancy pattern did not significantly impact any GHG fluxes. CO2 and CH4 - but not N2O - flux was significantly higher in the anoxic/hypoxic zone than in the oxic zone. Greenhouse gas fluxes in the oxic zone were not related to any wastewater properties. CO2 and CH4 flux from the anoxic/hypoxic zone peaked at ~22-23 °C, and was negatively correlated with dissolved oxygen levels, the latter suggesting that CO2 and CH4 flux result primarily from anaerobic respiration. Ammonium concentration and CH4 flux were positively correlated, likely due to inhibition of CH4 oxidation by NH4+. N2O flux in the anoxic/hypoxic zone was not correlated to any wastewater property. We estimate that advanced N-removal OWTS contribute 262 g CO2 equivalents capita-1 day-1, slightly lower than emissions from conventional OWTS. Our results suggest that technology influences CO2 and N2O flux and zone influences CO2 and CH4 flux, while occupancy pattern does not appear to impact GHG flux. Manipulating wastewater properties, such as temperature and dissolved oxygen, may help mitigate GHG emissions from these systems.

3.
Sci Total Environ ; 739: 140362, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758972

RESUMEN

Septic systems represent a source of greenhouse gases generated by microbial processes as wastewater constituents are degraded. Both aerobic and anerobic wastewater transformation processes can generate nitrous oxide and methane, both of which are potent greenhouse gases (GHGs). To understand how microbial communities in the surface soils above shallow drainfields contribute to methane and nitrous oxide consumption, we measured greenhouse gas surface flux and below-ground concentrations and compared them to the microbial communities present using functional genes pmoA and nosZ. These genes encode portions of particulate methane monooxygenase and nitrous oxide reductase, respectively, serving as a potential sink for the respective greenhouse gases. We assessed the surface soils above three drainfields served by a single household: an experimental layered passive N-reducing drainfield, a control conventional drainfield, and a reserve drainfield not in use but otherwise identical to the control. We found that neither GHG flux, below-ground concentration or soil properties varied among drainfield types, nor did methane oxidizing and nitrous oxide reducing communities vary by drainfield type. We found differences in pmoA and nosZ communities based on depth from the soil surface, and differences in nosZ communities based on whether the sample came from the rhizosphere or surrounding bulk soils. Type I methanotrophs (Gammaproteobacteria) were more abundant in the upper and middle portions of the soil above the drainfield. In general, we found no relationship in community composition for either gene based on GHG flux or below-ground concentration or soil properties (bulk density, organic matter, above-ground biomass). This is the first study to assess these communities in the surface soils above an experimental working drainfield, and more research is needed to understand the dynamics of greenhouse gas production and consumption in these systems.


Asunto(s)
Gases de Efecto Invernadero , Microbiota , Dióxido de Carbono , Metano/análisis , Nitrógeno , Óxido Nitroso/análisis , Suelo
4.
Sci Total Environ ; 744: 140936, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32755783

RESUMEN

Lignocellulose-amended, layered soil treatment areas (STAs) remove nitrogen (N) passively from wastewater by sequential nitrification and denitrification. As wastewater percolates through the STA, the top sand layer promotes nitrification, and the lower, lignocellulos-amended sand layer promotes heterotrophic denitrification. Layered STAs can remove large amounts of N from wastewater, which may increase their emissions of CO2, N2O, and CH4 to the atmosphere. We measured greenhouse gas (GHG) flux from sawdust-amended (Experimental) and sand-only (Control) STAs installed in three homes in southeastern Massachusetts, USA. The Experimental STAs did not emit significantly more GHGs to the atmosphere than Control STAs receiving the same wastewater inputs, and both Control and Experimental STAs emitted more CO2 and N2O - but not CH4 - than soil not treating wastewater. Median (range) flux (µmol m-2 s-1) for all homes for the Control STAs was 7.6 (0.8-23.0), 0.0001 (-0.0004-0.004), and 0.0008 (0-0.02) for CO2, CH4 and N2O, respectively, whereas values for the Experimental STAs were 6.6 (0.3-24.3), 0 (-0.0005-0.005), and 0.0004 (0-0.02) for CO2, CH4 and N2O, respectively. Despite the absence of differences in flux between Control and Experimental STAs, the Experimental STA had significantly higher subsurface GHG levels than the Control STA, suggesting microbial consumption of excess gas levels near the ground surface in the Experimental STA. The flux of GHGs from Experimental and Control STAs was controlled chiefly by temperature, soil moisture, and subsurface GHG concentrations. Total emissions (gCO2e capita-1 day-1) were higher than those reported by others for conventional STAs, with mean values ranging from 0 to 1835 for septic tanks, and from 30 to 1938 for STAs. Our results suggest that, despite a higher capacity to remove N from wastewater, layered STAs may have limited impact on air quality compared to conventional STAs.

5.
J Environ Qual ; 47(5): 1163-1171, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30272776

RESUMEN

Advanced N-removal onsite wastewater treatment systems (OWTS) rely on nitrification and denitrification to remove N from wastewater. Despite their use to reduce N contamination, we know little about microbial communities controlling N removal in these systems. We used quantitative polymerase chain reaction and high-throughput sequencing targeting nitrous oxide reductase () and bacterial ammonia monooxygenase () to determine the size, structure, and composition of communities containing these genes. We analyzed water samples from three advanced N-removal technologies in 38 systems in five towns in Rhode Island in August 2016, and in nine systems from one town in June, August, and October 2016. Abundance of ranged from 9.1 × 10 to 9 × 10 copies L and differed among technologies and over time, whereas bacterial abundance ranged from 0 to 1.9 × 10 copies L and was not different among technologies or over time. Richness and diversity of -but not -differed over time, with median Shannon diversity indices ranging from 2.61 in October to 4.53 in August. We observed weak community similarity patterns driven by geography and technology in The most abundant and containing bacteria were associated with water distribution and municipal wastewater treatment plants, such as and species. Our results show that communities in N-removal OWTS technologies differ slightly in terms of size and diversity as a function of time, but not geography, whereas communities are similar across time, technology, and geography. Furthermore, community composition appears to be stable across technologies, geography, and time for .


Asunto(s)
Bacterias/metabolismo , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Desnitrificación , Microbiota , Nitrificación , Aguas del Alcantarillado/microbiología
6.
Environ Monit Assess ; 190(3): 159, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29468318

RESUMEN

Historically, much of the New England landscape was converted to pasture for grazing animals and harvesting hay. Both consumer demand for local sustainably produced food, and the number of small farms is increasing in RI, highlighting the importance of characterizing the effects livestock have on the quality of pasture soils. To assess how livestock affect pasture on Charlton and Canton soils series in RI, we examined soil quality in farms raising beef cattle (Bos taurus), sheep (Ovis aries), and horses (Equus ferus caballus), using hayed pastures as a control. We sampled three pastures per livestock type and three control hayed pastures in May, August, and October 2012. Hay fields and pastures grazed by sheep had statistically significant (P < 0.001) better soil quality than pastures grazed by beef cattle or horses. This was driven by parameters including penetration resistance, bulk density, aggregate stability, and infiltration rate. Hayfields also showed higher soil quality measures than grazed pastures for organic matter content and active C. In addition, significant differences in nitrate and phosphate concentrations were observed among livestock types. Respiration and infiltration rates, pH, and ammonium concentrations, on the other hand, did not differ significantly among pasture types. When all soil quality indicators in this study were weighed equally, soil quality scores followed the order: hay > sheep > beef cattle > horses. The results of our study provide baseline data on the effect different types of livestock have on pasture soil quality in RI, which may be useful in making sound land use and agricultural management decisions.


Asunto(s)
Monitoreo del Ambiente , Herbivoria , Suelo/química , Agricultura , Animales , Bovinos , Caballos , Ganado , New England , Ovinos , Contaminantes del Suelo/análisis
7.
J Environ Qual ; 46(5): 931-938, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28991972

RESUMEN

Biological nitrogen removal (BNR) systems are increasingly used in the United States in both centralized wastewater treatment plants (WWTPs) and decentralized advanced onsite wastewater treatment systems (OWTS) to reduce N discharged in wastewater effluent. However, the potential for BNR systems to be sources of nitrous oxide (NO), a potent greenhouse gas, needs to be evaluated to assess their environmental impact. We quantified and compared NO emissions from BNR systems at a WWTP (Field's Point, Providence, RI) and three types of advanced OWTS (Orenco Advantex AX 20, SeptiTech Series D, and Bio-Microbics MicroFAST) in nine Rhode Island residences ( = 3 per type) using cavity ring-down spectroscopy. We also used quantitative polymerase chain reaction to determine the abundance of genes from nitrifying () and denitrifying () microorganisms that may be producing NO in these systems. Nitrous oxide fluxes ranged from -4 × 10 to 3 × 10 µmol NO m s and in general followed the order: centralized WWTP > Advantex > SeptiTech > FAST. In contrast, when NO emissions were normalized by population served and area of treatment tanks, all systems had overlapping ranges. In general, the emissions of NO accounted for a small fraction (<1%) of N removed. There was no significant relationship between the abundance of or genes and NO emissions. This preliminary analysis highlights the need to evaluate NO emissions from wastewater systems as a wider range of technologies are adopted. A better understanding of the mechanisms of NO emissions will also allow us to better manage systems to minimize emissions.


Asunto(s)
Óxido Nitroso/análisis , Aguas Residuales , Desnitrificación , Nitrógeno , Purificación del Agua
8.
PLoS One ; 11(9): e0162104, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27583363

RESUMEN

Climate change may affect the ability of soil-based onsite wastewater treatment systems (OWTS) to treat wastewater in coastal regions of the Northeastern United States. Higher temperatures and water tables can affect treatment by reducing the volume of unsaturated soil and oxygen available for treatment, which may result in greater transport of pathogens, nutrients, and biochemical oxygen demand (BOD5) to groundwater, jeopardizing public and aquatic ecosystem health. The soil treatment area (STA) of an OWTS removes contaminants as wastewater percolates through the soil. Conventional STAs receive wastewater from the septic tank, with infiltration occurring deeper in the soil profile. In contrast, shallow narrow STAs receive pre-treated wastewater that infiltrates higher in the soil profile, which may make them more resilient to climate change. We used intact soil mesocosms to quantify the water quality functions of a conventional and two types of shallow narrow STAs under present climate (PC; 20°C) and climate change (CC; 25°C, 30 cm elevation in water table). Significantly greater removal of BOD5 was observed under CC for all STA types. Phosphorus removal decreased significantly from 75% (PC) to 66% (CC) in the conventional STA, and from 100% to 71-72% in shallow narrow STAs. No fecal coliform bacteria (FCB) were released under PC, whereas up to 17 and 20 CFU 100 mL-1 were released in conventional and shallow narrow STAs, respectively, under CC. Total N removal increased from 14% (PC) to 19% (CC) in the conventional STA, but decreased in shallow narrow STAs, from 6-7% to less than 3.0%. Differences in removal of FCB and total N were not significant. Leaching of N in excess of inputs was also observed in shallow narrow STAs under CC. Our results indicate that climate change can affect contaminant removal from wastewater, with effects dependent on the contaminant and STA type.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Cambio Climático , Fósforo/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , New England , Nitrógeno/aislamiento & purificación
9.
PLoS One ; 11(6): e0158292, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27355369

RESUMEN

Most of the non-point source nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA) under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+) and nitrate (NO3-) concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1) a pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (PSND) and (3) Geomat (GEO), a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME) ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide practitioners with guidelines to estimate N removal efficiencies for traditional and advanced OWTS, and predict N loads and spatial distribution for identifying non-point sources. Our results show that N losses on OWTS can be modeled successfully using HYDRUS. Furthermore, the results suggest that climate change may increase the removal of N as N2 in the drainfield, with the magnitude of the effect depending on a drainfield type.


Asunto(s)
Nitrógeno/análisis , Suelo/química , Aguas Residuales/análisis , Purificación del Agua/métodos , Compuestos de Amonio/química , Calibración , Clima , Cambio Climático , Simulación por Computador , Desnitrificación , Conductividad Eléctrica , Monitoreo del Ambiente , Eutrofización , Agua Subterránea/química , Concentración de Iones de Hidrógeno , Nitratos/química , Nitrógeno/química , Oxígeno/química , Programas Informáticos , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
10.
J Environ Qual ; 44(5): 1459-72, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26436263

RESUMEN

Bacteria removal efficiencies in a conventional soil-based wastewater treatment system (OWTS) have been modeled to elucidate the fate and transport of bacteria under environmental and operational conditions that might be expected under changing climatic conditions. The HYDRUS 2D/3D software was used to model the impact of changing precipitation patterns, bacteria concentrations, hydraulic loading rates (HLRs), and higher subsurface temperatures at different depths and soil textures. Modeled effects of bacteria concentration shows that greater depth of treatment was required in coarser soils than in fine-textured ones to remove . The initial removal percentage was higher when HLR was lower, but it was greater when HLR was higher. When a biomat layer was included in the transport model, the performance of the system improved by up to 12.0%. Lower bacteria removal (<5%) was observed at all depths under the influence of precipitation rates ranging from 5 to 35 cm, and 35-cm rainfall combined with a 70% increase in HLR. Increased subsurface temperature (23°C) increased bacteria removal relative to a lower temperature range (5-20°C). Our results show that the model is able to effectively simulate bacteria removal and the effect of precipitation and temperature in different soil textures. It appears that the performance of OWTS may be impacted by changing climate.

11.
J Environ Qual ; 44(3): 953-62, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26024275

RESUMEN

Shallow narrow drainfields are assumed to provide better wastewater renovation than conventional drainfields and are used for protection of surface and ground water. To test this assumption, we evaluated the water quality functions of two advanced onsite wastewater treatment system (OWTS) drainfields-shallow narrow (SND) and Geomat (GEO)-and a conventional pipe and stone (P&S) drainfield over 12 mo using replicated ( = 3) intact soil mesocosms. The SND and GEO mesocosms received effluent from a single-pass sand filter, whereas the P&S received septic tank effluent. Between 97.1 and 100% of 5-d biochemical oxygen demand (BOD), fecal coliform bacteria, and total phosphorus (P) were removed in all drainfield types. Total nitrogen (N) removal averaged 12.0% for P&S, 4.8% for SND, and 5.4% for GEO. A mass balance analysis accounted for 95.1% (SND), 94.1% (GEO), and 87.6% (P&S) of N inputs. When the whole treatment train (excluding the septic tank) is considered, advanced systems, including sand filter pretreatment and SND or GEO soil-based treatment, removed 99.8 to 99.9% of BOD, 100% of fecal coliform bacteria and P, and 26.0 to 27.0% of N. In contrast, the conventional system removed 99.4% of BOD and 100% of fecal coliform bacteria and P but only 12.0% of N. All drainfield types performed similarly for most water quality functions despite differences in placement within the soil profile. However, inclusion of the pretreatment step in advanced system treatment trains results in better N removal than in conventional treatment systems despite higher drainfield N removal rates in the latter.

12.
J Environ Qual ; 43(6): 2130-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25602229

RESUMEN

Optimization of N removal in soil-based wastewater treatment systems requires an understanding of the microbial processes involved in N transformations. We examined the fate of NH in intermittently aerated leachfield mesocosms over a 24-h period. Septic tank effluent (STE) was amended with NHCl to help determine N speciation and distribution in drainage water, soil, and headspace gases. Our results show that 5.7% of the N was found in soil, 10.0% in drainage water, and 84.3% in the gas pool. Ammonium accounted for 41.7% of the soil N pool, followed by NO (29.2%), organic N (21.7%), and microbial biomass N (7.5%). In drainage water, NO constituted ∼80% of the N pool, whereas NH was absent from this pool. Nitrous oxide was the dominant form of N in the gas phase 6 h after addition of NH-amended STE to the mesocosms, after which its mass declined exponentially; by contrast, the mass of N was initially low but increased linearly with time to become the dominant form of N after 24 h. Analysis based on the isotopic enrichment of NO and N indicates that nitrification contributed 98.8 and 23.1% of the NO flux after 6 and 24 h, respectively. Our results show that gaseous losses are the main mechanism for NH removal from wastewater in intermittently aerated soil. In addition, nitrification, which is generally not considered a significant pathway for N loss in soil-based wastewater treatment, is an important source process for NO.

13.
Mar Pollut Bull ; 62(7): 1577-83, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21570698

RESUMEN

We evaluated microbiological water quality in the Pettaquamscutt River (Rhode Island, USA), an estuarine river. Fecal coliform (FC) and enterococci (FE) bacteria, presence of Bifidobacterium adolescentis DNA (indicating human fecal contamination), and optical brightener (OB) fluorescence (associated with laundry detergents) were determined for 14 stations from May to September 2010. Six stations had high counts of FE and FC, and the presence of B. adolescentis DNA and high OB fluorescence indicated human fecal contamination - four had septic systems as likely sources of contamination; the others were in sewered areas. The ability of FC and FE to indicate human fecal contamination was assessed against a positive B. adolescentis test. FC and FE had false positive rates of 25% and 17%, respectively, and false negatives of 44% for FC and 63% for FE. Inclusion of molecular and chemical indicators should improve tracking of human fecal contamination sources in the river.


Asunto(s)
Bacterias/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Ríos/microbiología , Microbiología del Agua , Contaminación del Agua/análisis , Bacterias/aislamiento & purificación , Bifidobacterium/crecimiento & desarrollo , Bifidobacterium/aislamiento & purificación , Enterococcus/crecimiento & desarrollo , Enterococcus/aislamiento & purificación , Rhode Island , Ríos/química , Aguas del Alcantarillado/análisis , Contaminación del Agua/estadística & datos numéricos
14.
J Nematol ; 42(1): 68-72, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22736839

RESUMEN

Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, V(s), varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total V(s) of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter.

15.
Artículo en Inglés | MEDLINE | ID: mdl-18569320

RESUMEN

We examined the effects of tetracycline (TET) addition on the function of mesocosms representing aerated and unaerated septic system leachfields. Replicate mesocosms (n = 3) were filled with soil and either vented to a leachfield (LEACH) or aerated intermittently to maintain an O(2) level of approximately 0.21 mol mol(-1) (AIR). All mesocosms were dosed every 6 h for 10 d with 3 cm of domestic wastewater amended with 5 mg TET L(-1). Water quality parameters, headspace gas composition, and soil properties were measured prior to and during the dosing period, and for 42 days after the last antibiotic dose. No significant effect of TET was observed on the pH, level of dissolved O(2) or dissolved organic carbon (DOC) in drainage water from either treatment. In contrast, levels of Fe(2+) and SO(4) in drainage water from LEACH mesocosms decreased in response to TET dosing, with lower levels persisting until Day 52. Persistent increases were observed in the level of NO(3) in drainage water from AIR lysimeters and in NH(4) in LEACH mesocosms in response to TET additions. Removal of total P and DOC were unaffected by TET dosing in either treatment. Nitrogen removal in AIR mesocosms decreased during the TET dosing period, returning to pre-dosing values by Day 52. In contrast, TN removal in LEACH mesocosms increased during TET dosing, returning to pre-dosing values by Day 52. The composition of headspace gases in AIR mesocosms was not affected by tetracycline dosing. TET dosing resulted in significant increases in soil NH(4) concentration in LEACH mesocosms, whereas significant decreases were apparent in AIR mesocosms. Elevated levels of H(2)S and CH(4) in the headspace of LEACH mesocosms coincided with TET dosing and returned to pre-dosing levels when antibiotic dosing ceased. The effects of tetracycline on leachfield mesocosms differed as a function of aeration. Although most effects were transient, with values returning to pre-dosing levels after a 6-week recovery period in both treatments, persistent effects were observed in LEACH mesocosms.


Asunto(s)
Ecosistema , Gases/química , Aguas del Alcantarillado/química , Suelo , Tetraciclina/química , Contaminantes Químicos del Agua/química , Agua/química , Aire
16.
Artículo en Inglés | MEDLINE | ID: mdl-17849298

RESUMEN

Antibiotics can be present in low concentrations in domestic wastewater, but little is known about their effect on bacteria in onsite wastewater treatment systems. Mesocosms, consisting of soil-filled lysimeters representing the leachfield of a septic system under aerated (AIR) and unaerated (LEACH) conditions, were used to study the effects of tetracycline addition (5 mg L(-1)) to septic tank effluent on tetracycline resistance in the fecal indicator bacteria Escherichia coli and fecal streptococci, and on their removal. The mesocosms were dosed with antibiotic for 10 days, and effects monitored for 52 days. The fraction of resistant bacteria in mesocosm drainage water relative to that in septic tank effluent, GammaRes, for E. coli ranged from 0 to 0.66 in the AIR treatment and from 0 to 3.32 in the LEACH treatment. For fecal streptococci, GammaRes ranged from 0 to 0.41 and from 0.63 to 1.06 in the AIR and LEACH treatments, respectively. No significant differences in antibiotic resistance of fecal indicator bacteria were observed among sampling dates in soil or water from either treatment. Tetracycline had no significant effect on removal of fecal indicator bacteria, which ranged from 99.9 to 100% for E. coli and from 95.9 to 100% for fecal streptococci. Our results suggest that short-term addition of tetracycline at environmentally-relevant concentrations is likely to have minimal consequences on pathogen removal from wastewater and development of antibiotic resistance among pathogenic bacteria in leachfield soil.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Microbiana , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecium/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Tetraciclina/farmacología , Eliminación de Residuos Líquidos/métodos , Recuento de Colonia Microbiana , Enterococcus faecalis/crecimiento & desarrollo , Enterococcus faecalis/aislamiento & purificación , Enterococcus faecium/crecimiento & desarrollo , Enterococcus faecium/aislamiento & purificación , Escherichia coli/crecimiento & desarrollo , Escherichia coli/aislamiento & purificación , Heces/microbiología , Contaminantes del Suelo/aislamiento & purificación , Contaminantes del Agua/aislamiento & purificación
17.
J Environ Qual ; 35(4): 1160-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16738402

RESUMEN

Aeration improves the capacity of leachfields to decontaminate and reduce the nutrient load of wastewater. To gain a better understanding of the effects of aeration, we examined the faunal and microbial communities of septic system leachfield soil (0-4 and 4-13 cm) using replicated (n = 3) mesocosms that were actively aerated (AIR) or unaerated (LEACH). Protozoa were 40 to 140 times more abundant in AIR than in LEACH soil. No nematodes were found in LEACH soil, whereas AIR soil contained 5 to 14 x 10(3) nematodes (all bacteriovores) kg(-1). Active microbial biomass was four to five times higher in AIR than LEACH soil. Proteobacteria and actinomycetes/sulfate-reducing bacteria constituted a higher proportion of the community in AIR soil, whereas anaerobic Gram-negative bacteria/firmicutes were more prominent in LEACH soil. Ratios of prokaryotic to eukaryotic phospholipid fatty acids (PLFAs) were higher in LEACH soil, as were membrane stress index values, whereas the starvation index was higher in AIR soil. Community-level physiological profiles showed that 29 and 30 different substrates were used for growth by LEACH and AIR soil microorganisms, respectively. The AIR soil had more microorganisms capable of growing on 10 substrates, whereas growth on two substrates was higher in LEACH soil. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of 16S rRNA gene fragments revealed greater diversity of dominant phylotypes in AIR than LEACH soil, with communities separated by treatment. Aerated leachfield soil had a larger and more diverse faunal and microbial community than unaerated soil, possibly due to differences in the type and availability of electron acceptors.


Asunto(s)
Aerobiosis/fisiología , Anaerobiosis/fisiología , Bacterias/metabolismo , Ecosistema , Microbiología del Suelo , Agricultura , Bacterias/genética , Técnicas Bacteriológicas , Electroforesis , Células Eucariotas/metabolismo , Ácidos Grasos/análisis , Fosfolípidos/análisis , Reacción en Cadena de la Polimerasa , Células Procariotas/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/aislamiento & purificación , Contaminantes del Suelo/metabolismo
18.
J Nematol ; 37(1): 71-7, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19262845

RESUMEN

Short-chain fatty acids can be produced under anaerobic conditions by fermentative soil microbes and have nematicidal properties. We evaluated the effects of butyric and propionic acids on death and recovery of stunt nematodes (Tylenchorhynchus spp.), a common parasite of turfgrass. Nematodes in a sand-soil mix (80:20) were treated with butyric or propionic acid and incubated under air or N for 7 days at 25 degrees C. Amendment of soil with 0.1 and 1.0 micromol (8.8 and 88 microg) butyric acid/g soil or 1.0 micromol (74 microg) propionic acid/g soil resulted in the death of all nematodes. The composition of the soil atmosphere had no effect on the nematicidal activity of the acids. Addition of hydrochloric acid to adjust soil pH to 4.4 and 3.5 resulted in nematode mortality relative to controls (41% to 86%) but to a lesser degree than short-chain fatty acids at the same pH. Nematodes did not recover after a 28-day period following addition of 10 micromol butyric acid/g soil under air or N. Carbon mineralization decreased during this period, whereas levels of inorganic N and microbial biomass-N remained constant. Short-chain fatty acids appear to be effective in killing Tylenchorhynchus spp. independent of atmospheric composition. Nematode mortality appears to be a function of the type and concentration of fatty acid and soil pH.

19.
J Environ Qual ; 33(5): 1828-38, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15356244

RESUMEN

We conducted a pilot-scale study at a research facility in southeastern Connecticut to assess the effects of leachfield aeration on removal of nutrients and pathogens from septic system effluent. Treatments consisted of lysimeters periodically aerated to maintain a headspace O(2) concentration of 0.209 mol mol(-1) (AIR) or vented to an adjacent leachfield trench (LEACH) and were replicated three times. All lysimeters were dosed with effluent from a septic tank for 24 mo at a rate of 12 cm d(-1) and subsequently for 2 mo at 4 cm d(-1). LEACH lysimeters had developed a clogging mat, or biomat, 20 mo before the beginning of our study. The level of aeration in the AIR treatment was held constant regardless of loading rate. No conventional biomat developed in the AIR treatment, whereas a biomat was present in the LEACH lysimeters. The headspace of LEACH lysimeters was considerably depleted in O(2) and enriched in CH(4), CO(2), and H(2)S relative to AIR lysimeters. Drainage water from AIR lysimeters was saturated with O(2) and had significantly lower pH, five-day biological oxygen demand (BOD(5)), and ammonium, and higher levels of nitrate and sulfate than LEACH lysimeters regardless of dosing rate. By contrast, significantly lower levels of total N and fecal coliform bacteria were observed in AIR than in LEACH lysimeters only at the higher dosing rate. No significant differences in total P removal were observed. Our results suggest that aeration may improve the removal of nitrogen, BOD(5), and fecal coliforms in leachfield soil, even in the absence of a biomat.


Asunto(s)
Enterobacteriaceae/aislamiento & purificación , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Eliminación de Residuos Líquidos , Aire , Biodegradación Ambiental , Ingeniería , Nitrógeno/análisis , Oxígeno/metabolismo , Fósforo/análisis , Control de Calidad , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA