Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 8(1): 135-149, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604511

RESUMEN

Aedes aegypti and A. albopictus mosquitoes are the main vectors for dengue virus (DENV) and other arboviruses, including Zika virus (ZIKV). Understanding the factors that affect transmission of arboviruses from mosquitoes to humans is a priority because it could inform public health and targeted interventions. Reasoning that interactions among viruses in the vector insect might affect transmission, we analysed the viromes of 815 urban Aedes mosquitoes collected from 12 countries worldwide. Two mosquito-specific viruses, Phasi Charoen-like virus (PCLV) and Humaita Tubiacanga virus (HTV), were the most abundant in A. aegypti worldwide. Spatiotemporal analyses of virus circulation in an endemic urban area revealed a 200% increase in chances of having DENV in wild A. aegypti mosquitoes when both HTV and PCLV were present. Using a mouse model in the laboratory, we showed that the presence of HTV and PCLV increased the ability of mosquitoes to transmit DENV and ZIKV to a vertebrate host. By transcriptomic analysis, we found that in DENV-infected mosquitoes, HTV and PCLV block the downregulation of histone H4, which we identify as an important proviral host factor in vivo.


Asunto(s)
Aedes , Arbovirus , Virus del Dengue , Dengue , Virus de Insectos , Virus ARN , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Virus Zika/genética , Virus de Insectos/fisiología , Virus del Dengue/genética , Mosquitos Vectores , Arbovirus/genética
2.
Pathogens ; 11(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36015000

RESUMEN

Arboviruses (an acronym for "arthropod-borne virus"), such as dengue, yellow fever, Zika, and Chikungunya, are important human pathogens transmitted by mosquitoes. These viruses impose a growing burden on public health. Despite laboratory mice having been used for decades for understanding the basic biological phenomena of these viruses, it was only recently that researchers started to develop immunocompromised animals to study the pathogenesis of arboviruses and their transmission in a way that parallels natural cycles. Here, we show that the AG129 mouse (IFN α/ß/γ R-/-) is a suitable and comprehensive vertebrate model for studying the mosquito vector competence for the major arboviruses of medical importance, namely the dengue virus (DENV), yellow fever virus (YFV), Zika virus (ZIKV), Mayaro virus (MAYV), and Chikungunya virus (CHIKV). We found that, after intraperitoneal injection, AG129 mice developed a transient viremia lasting several days, peaking on day two or three post infection, for all five arboviruses tested in this study. Furthermore, we found that the observed viremia was ample enough to infect Aedes aegypti during a blood meal from the AG129 infected mice. Finally, we demonstrated that infected mosquitoes could transmit each of the tested arboviruses back to naïve AG129 mice, completing a full transmission cycle of these vector-borne viruses. Together, our data show that A129 mice are a simple and comprehensive vertebrate model for studies of vector competence, as well as investigations into other aspects of mosquito biology that can affect virus-host interactions.

3.
Viruses ; 13(5)2021 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923055

RESUMEN

The emergence of new human viral pathogens and re-emergence of several diseases are of particular concern in the last decades. Oropouche orthobunyavirus (OROV) is an arbovirus endemic to South and Central America tropical regions, responsible to several epidemic events in the last decades. There is little information regarding the ability of OROV to be transmitted by urban/peri-urban mosquitoes, which has limited the predictability of the emergence of permanent urban transmission cycles. Here, we evaluated the ability of OROV to infect, replicate, and be transmitted by three anthropophilic and urban species of mosquitoes, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. We show that OROV is able to infect and efficiently replicate when systemically injected in all three species tested, but not when orally ingested. Moreover, we find that, once OROV replication has occurred in the mosquito body, all three species were able to transmit the virus to immunocompromised mice during blood feeding. These data provide evidence that OROV is restricted by the midgut barrier of three major urban mosquito species, but, if this restriction is overcome, could be efficiently transmitted to vertebrate hosts. This poses a great risk for the emergence of permanent urban cycles and geographic expansion of OROV to other continents.


Asunto(s)
Aedes/virología , Culex/virología , Mosquitos Vectores/virología , Orthobunyavirus/fisiología , Animales , Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología , Modelos Animales de Enfermedad , Femenino , Especificidad del Huésped , Interacciones Huésped-Patógeno , Ratones , Ratones Noqueados
4.
Nat Microbiol ; 3(12): 1385-1393, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30374169

RESUMEN

Dengue virus (DENV) is an arbovirus transmitted to humans by Aedes mosquitoes1. In the insect vector, the small interfering RNA (siRNA) pathway is an important antiviral mechanism against DENV2-5. However, it remains unclear when and where the siRNA pathway acts during the virus cycle. Here, we show that the siRNA pathway fails to efficiently silence DENV in the midgut of Aedes aegypti although it is essential to restrict systemic replication. Accumulation of DENV-derived siRNAs in the midgut reveals that impaired silencing results from a defect downstream of small RNA biogenesis. Notably, silencing triggered by endogenous and exogenous dsRNAs remained effective in the midgut where known components of the siRNA pathway, including the double-stranded RNA (dsRNA)-binding proteins Loquacious and r2d2, had normal expression levels. We identified an Aedes-specific paralogue of loquacious and r2d2, hereafter named loqs2, which is not expressed in the midgut. Loqs2 interacts with Loquacious and r2d2 and is required to control systemic replication of DENV and also Zika virus. Furthermore, ectopic expression of Loqs2 in the midgut of transgenic mosquitoes is sufficient to restrict DENV replication and dissemination. Together, our data reveal a mechanism of tissue-specific regulation of the mosquito siRNA pathway controlled by Loqs2.


Asunto(s)
Aedes/metabolismo , Proteínas Portadoras/metabolismo , Virus del Dengue/metabolismo , Expresión Génica Ectópica , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Aedes/genética , Aedes/virología , Animales , Animales Modificados Genéticamente , Antivirales/metabolismo , Antivirales/farmacología , Proteínas Portadoras/genética , Replicación del ADN , Dengue/virología , Virus del Dengue/efectos de los fármacos , Virus del Dengue/genética , Virus del Dengue/patogenicidad , Proteínas de Drosophila , Femenino , Tracto Gastrointestinal/virología , Silenciador del Gen , Interacciones Huésped-Patógeno , Mosquitos Vectores/virología , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/farmacología , Replicación Viral , Virus Zika/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...