Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 818: 151783, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34801504

RESUMEN

Environmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples. However, the eDNA metabarcoding has also been applied to soft sediment samples, mainly for assessing microbial or meiofaunal biota. Compared to classical methodologies based on manual sorting and morphological identification of benthic taxa, eDNA metabarcoding offers potentially important advantages for assessing the environmental quality of sediments. The methods and protocols utilized for sediment eDNA metabarcoding can vary considerably among studies, and standardization efforts are needed to improve their robustness, comparability and use within regulatory frameworks. Here, we review the available information on eDNA metabarcoding applied to sediment samples, with a focus on sampling, preservation, and DNA extraction steps. We discuss challenges specific to sediment eDNA analysis, including the variety of different sources and states of eDNA and its persistence in the sediment. This paper aims to identify good-practice strategies and facilitate method harmonization for routine use of sediment eDNA in future benthic monitoring.


Asunto(s)
ADN Ambiental , Biodiversidad , ADN/genética , Código de Barras del ADN Taxonómico , Ecosistema , Monitoreo del Ambiente/métodos
2.
Water Res ; 173: 115532, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32059128

RESUMEN

Saline-alkaline lakes of the East African Rift are known to have an extremely high primary production supporting a potent carbon cycle. To date, a full description of carbon pools in these lakes is still missing. More specifically, there is not detailed information on the quality of dissolved organic matter (DOM), the main carbon energy source for heterotrophs prokaryotes. We report the first exhaustive description of DOM molecular properties in the water column of a meromictic saline-alkaline lake of the East African Rift. DOM availability, fate and origin were studied either quantitatively, in terms of dissolved organic carbon (DOC) and nitrogen (DON) or qualitatively, in terms of optical properties (absorbance) and molecular characterization of solid-phase extracted DOM (SPE-DOM) through negative electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). DOM availability was high (DOC ∼ 8.1 mM in surface waters) and meromixis imprinted a severe quantitative and qualitative change on DOM pool. At the surface, DOM was rich in aliphatic and moderately in aromatic molecules and thus mirroring autochthonous microbial production together with photodegradation. At the bottom changes were extreme: DOC increased up to 5 times (up to 50 mM) and, molecular signature drifted to saturated, reduced and non-aromatic DOM suggesting intense microbial activity within organic sediments. At the chemocline, DOC was retained indicating that this interface is a highly reactive layer in terms of DOM processing. These findings underline that saline-alkaline lakes of the East African Rift are carbon processing hot spots and their investigation may broaden our understanding of carbon cycling in inland waters at large.


Asunto(s)
Carbono , Lagos , Ciclo del Carbono , Espectrometría de Masas , Nitrógeno
3.
Environ Pollut ; 242(Pt B): 1860-1870, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30126737

RESUMEN

Marine sediments are part of the hydrological cycle and the ultimate storage compartment of land-derived organic matter, including pollutants. Since relevant microbially-driven processes occurring at benthic level may affect the quality of the overall aquatic system, the necessity for incorporating information about microbial communities functioning for ecosystem modelling is arising. The aim of this field study was to explore the links occurring between sediment contamination patterns by three selected class of organic pollutants (Polycyclic Aromatic Hydrocarbons, PAHs, Nonylphenols, NPs, Bisphenol A, BPA) and major microbial properties (Prokaryotic Biomass, PB; total living biomass, C-ATP; Prokaryotic C Production rate, PCP; Community Respiration rate, CR) across a gradient of anthropogenic pollution. Sediments were sampled from 34 sites selected along 700 km of the western coastline of the Adriatic Sea. Organic contamination was moderate (PAHs <830 ng g-1; NPs <350  ng g-1; BPA <38  ng g-1) and decreased southward. The amount of PAHs-associated carbon (C-PAHs) increased significantly with sediment organic carbon (OC), along with microbial functional rates. The negative relation between PCP/CR ratio and OC indicated the shift toward oxidative processes in response to organic pollution and potential toxicity, estimated as Toxic Equivalents (TEQs). Our outcomes showed that sediment organic contamination and benthic microbial processes can be intimately linked, with potential repercussions on CO2 emission rates and C-cycling within the detritus-based trophic web.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Compuestos de Bencidrilo/análisis , Biomasa , Ecosistema , Sedimentos Geológicos/microbiología , Fenoles/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Microbiología del Agua
4.
Water Res ; 99: 33-45, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27132197

RESUMEN

Uncertainties exist regarding the magnitude of in situ dissolved organic matter (DOM) processing in lotic systems. In addition, little is known about the effects of extreme hydrological events on in-stream DOM retention or release during downriver transport. This study quantified the net in-stream retention/release efficiencies (η) of dissolved organic carbon (DOC) and its humic and protein-like fluorescent fractions along a Mediterranean river during drought, baseflow and flood conditions. High performance size exclusion chromatography was used to describe the apparent size distributions of the humic and protein-like DOM moieties. A snapshot mass balance allowed estimating the η values of DOC and humic and protein-like fractions. Significant DOM net retention (η < 0) was detected during the drought condition and the protein-like fraction was more retained than the humic-like fraction and bulk DOC. In addition, small substances were more efficiently retained than larger substances. DOC retention decreased under baseflow conditions, but it remained significant. The humic and protein-like net efficiencies exhibited high variability, but the net retention were not significant. From a longitudinal perspective, the entire fluvial corridor contributed net retention of DOC and humic and protein-like moieties net retention during drought condition. In contrast, net retention/release efficiencies exhibited spatial variability during baseflow condition. The flood preferentially mobilized large size DOM molecules and the fluvial corridor behaved as a homogeneous passive DOM (η = 0) conduit. This research highlights the relevance of hydrological extreme events on the magnitude of DOM retention/release mass balance and emphasizes the need to perform measurements during these conditions to quantify the impact of fluvial corridors on DOM fate and transport.


Asunto(s)
Hidrología , Ríos/química , Sustancias Húmicas
5.
Water Res ; 65: 384-94, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25165005

RESUMEN

Groundwaters may act as sinks or sources of organic and inorganic solutes, depending on the relative magnitude of biochemical mobilizing processes and groundwater-surface water exchanges. The objective of this study was to link the lithological and hydrogeological gradients to the aquatic microbial community structure in the transition from aquifer recharge (volcanic formations) to discharge areas (alluvial deposits). A field-scale analysis was performed along a water table aquifer in which volcanic products decreased in thickness and areal extension, while alluvial deposits became increasingly important. We measured the main groundwater physical parameters and the concentrations of major and trace elements. In addition, the microbial community structure was assessed by estimating the occurrence of total coliforms and Escherichia coli, the prokaryotic abundance, the cytometric and phylogenetic community composition. The overall biogeochemical asset differed along the aquifer flow path. The concentration of total and live prokaryotic cells significantly increased in alluvial waters, together with the percentages of Beta- and Delta-Proteobacteria. The microbial propagation over a theoretical groundwater travel time allowed for the identification of microbial groups shifting significantly in the transition between the two different hydrogeochemical facies. The microbial community structure was intimately associated with geochemical changes, thus it should be further considered in view of a better understanding of groundwater ecology and sustainable management strategies.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Agua Subterránea/química , Agua Subterránea/microbiología , Enterobacteriaceae/aislamiento & purificación , Sedimentos Geológicos/química , Italia , Movimientos del Agua
6.
Chemosphere ; 92(9): 1126-35, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23434260

RESUMEN

Antibiotics are emerging contaminants, which wing to their bioactivity, may lead to short-term and long-term alterations of natural microbial communities in aquatic environment. We investigated the effects of antibiotics on biofilm bacterial communities in the Llobregat River (Northeast Spain). Three sampling sites were selected: two less polluted sites and one hotspot. River water was collected from each site and used both as inoculum and medium for growing biofilms in independent mesocosms. After 25d of biofilm colonization, we exposed the colonized biofilms to river waters from the downstream sites (progressively contaminated by antibiotics). A control from each site was maintained where the growing biofilm was always exposed to water from the same site. The bacterial community composition, bacterial live/dead ratio and extracellular enzyme activities of the biofilms were measured before and 9d after exposing the biofilms to increasing contaminated waters. Sixteen antibiotic compounds were detected in the water from the three sampling sites. At each site, the antibiotics present in the highest concentrations were sulfonamides, followed by quinolones and macrolides. Bacterial communities of biofilms grown with the three river waters differed markedly in their structure, but less so in terms of functional descriptors. After switching the medium water to increasing pollution, biofilms exhibited increased levels of actinobacteria (HGC), a trend that was associated to the higher antibiotic concentrations in the water. These biofilms also showed increased bacterial mortality, and decreased extracellular leucine-aminopeptidase and alkaline phosphatase. There was a significant correlation between antibiotic concentrations and biofilm responses. Our results indicate that the continuous entrance of antibiotics in running waters cause significant structural and functional changes in microbial attached communities.


Asunto(s)
Actinobacteria/fisiología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Ríos/microbiología , Contaminantes Químicos del Agua/farmacología , Actinobacteria/enzimología , Actinobacteria/aislamiento & purificación , Fosfatasa Alcalina/metabolismo , Antibacterianos/análisis , Cromatografía Líquida de Alta Presión , Hibridación Fluorescente in Situ , Leucil Aminopeptidasa/metabolismo , Macrólidos/análisis , Quinolonas/análisis , España , Sulfonamidas/análisis , Espectrometría de Masas en Tándem , Microbiología del Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA