Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37374627

RESUMEN

The results of a tungsten-niobium alloy synthesis by the impact of pulsed compression plasma flows are presented. Tungsten plates with a 2 µm thin niobium coating were treated with dense compression plasma flows generated by a quasi-stationary plasma accelerator. The plasma flow with an absorbed energy density of 35-70 J/cm2 and pulse duration of 100 µs melted the niobium coating and a part of the tungsten substrate, which caused liquid-phase mixing and WNb alloy synthesis. Simulation of the temperature distribution in the top layer of the tungsten after the plasma treatment proved the formation of the melted state. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to determine the structure and phase composition. The thickness of the WNb alloy was 10-20 µm and a W(Nb) bcc solid solution was found.

2.
Materials (Basel) ; 16(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241321

RESUMEN

High-entropy alloys (HEAs) have prospects for use as nuclear structural materials. Helium irradiation can form bubbles deteriorating the structure of structural materials. The structure and composition of NiCoFeCr and NiCoFeCrMn HEAs formed by arc melting and irradiated with low-energy 40 keV He2+ ions and a fluence of 2 × 1017 cm-2 have been studied. Helium irradiation of two HEAs does not change the elemental and phase composition, and does not erode the surface. Irradiation of NiCoFeCr and NiCoFeCrMn with a fluence of 5 × 1016 cm-2 forms compressive stresses (-90 … -160 MPa) and the stresses grow over -650 MPa as fluence increases to 2 × 1017 cm-2. Compressive microstresses grow up to 2.7 GPa at a fluence of 5 × 1016 cm-2, and up to 6.8 GPa at 2 × 1017 cm-2. The dislocation density rises by a factor of 5-12 for a fluence of 5 × 1016 cm-2, and by 30-60 for a fluence of 2 × 1017 cm-2. Stresses and dislocation density in the HEAs change the most in the region of the maximal damage dose. NiCoFeCrMn has higher macro- and microstresses, dislocation density, and a larger increase in their values, with an increasing helium ion fluence compared to NiCoFeCr. NiCoFeCrMn a showed higher radiation resistance compared to NiCoFeCr.

3.
Nanotechnology ; 32(14): 145706, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33333501

RESUMEN

Silver nanowire (AgNW) networks have attracted particular attention as transparent conductive films (TCF) due to their high conductivity, flexibility, transparency, and large scale processing compatible synthesis. As-prepared AgNW percolating networks typically suffer from high contact resistance, requiring additional post-synthetic processing. In this report, large area irradiation with 200 ns short intense pulsed ion beam (IPIB) was used to anneal and enhance the conductivity of AgNW network, deposited on temperature-sensitive polyethylene terephthalate (PET) substrate. A TCF sheet resistance shows irradiation dose dependence, decreasing by four orders of magnitude and reaching a value of 70 Ω/sq without damaging the polymer substrate, which retained a transparency of 94%. The IPIB irradiation fused AgNW network into the PET substrate, resulting in a great adhesion enhancement. Heat transfer simulations show that the heat originates at the near-surface layer of the TCF and lasts an ultra-short period of time. Obtained experimental and simulation results indicate that the irradiation with IPIBs opens new perspectives in the low-temperature annealing of nanomaterials deposited on temperature-sensitive substrates.

4.
Nanomaterials (Basel) ; 10(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33137893

RESUMEN

In this report, an improvement of the electrical performance and stability of a silver nanowire (AgNW) transparent conductive coating (TCC) is presented. The TCC stability against oxidation is achieved by coating the AgNWs with a polyvinyl alcohol (PVA) layer. As a result, a UV/ozone treatment has not affected the morphology of the AgNWs network and the PVA protection layer, unlike non-passivated TCC, which showed severe degradation. The irradiation with an intense pulsed ion beam (IPIB) of 200 ns duration and a current density of 30 A/cm2 is used to increase the conductivity of the AgNWs network without degradation of the temperature-resistant PVA coating and decrease in the TCC transparency. Simulations have shown that, although the sample temperature reaches high values, the ultra-high heating and cooling rates, together with local annealing, enable the delicate thermal processing. The developed coatings and irradiation strategies are used to prepare and enhance the performance of AgNW-based transparent heaters. A single irradiation pulse increases the operating temperature of the transparent heater from 92 to 160 °C at a technologically relevant voltage of 12 V. The proposed technique shows a great promise in super-fast, low-temperature annealing of devices with temperature-sensitive components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...