Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 11(2): 713-731, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35025506

RESUMEN

Using Escherichia coli as the representative biofilm former, we report here the development of an in silico model built by simulating events that transform a free-living bacterial entity into self-encased multicellular biofilms. Published literature on ∼300 genes associated with pathways involved in biofilm formation was curated, static maps were created, and suitably interconnected with their respective metabolites using ordinary differential equations. Precise interplay of genetic networks that regulate the transitory switching of bacterial growth pattern in response to environmental changes and the resultant multicomponent synthesis of the extracellular matrix were appropriately represented. Subsequently, the in silico model was analyzed by simulating time-dependent changes in the concentration of components by using the R and python environment. The model was validated by simulating and verifying the impact of key gene knockouts (KOs) and systematic knockdowns on biofilm formation, thus ensuring the outcomes were comparable with the reported literature. Similarly, specific gene KOs in laboratory and pathogenic E. coli were constructed and assessed. MiaA, YdeO, and YgiV were found to be crucial in biofilm development. Furthermore, qRT-PCR confirmed the elevation of expression in biofilm-forming clinical isolates. Findings reported in this study offer opportunities for identifying biofilm inhibitors with applications in multiple industries. The application of this model can be extended to the health care sector specifically to develop novel adjunct therapies that prevent biofilms in medical implants and reduce emergence of biofilm-associated resistant polymicrobial-chronic infections. The in silico framework reported here is open source and accessible for further enhancements.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Bacterias , Biopelículas , Simulación por Computador , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Humanos
2.
Sci Rep ; 8(1): 7263, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29740005

RESUMEN

The mechanism of efflux is a tour-de-force in the bacterial armoury that has thwarted the development of novel antibiotics. We report the discovery of a novel chemical series with potent antibacterial properties that was engineered to overcome efflux liability. Compounds liable to efflux specifically via the Resistance Nodulation and cell Division (RND) pump, AcrAB-TolC were chosen for a hit to lead progression. Using structure-based design, the compounds were optimised to lose their binding to the efflux pump, thereby making them potent on wild-type bacteria. We discovered these compounds to be pro-drugs that require activation in E. coli by specific bacterial nitroreductases NfsA and NfsB. Hit to lead chemistry led to the generation of compounds that were potent on wild-type and multi-drug resistant clinical isolates of E. coli, Shigella spp., and Salmonella spp. These compounds are bactericidal and efficacious in a mouse thigh infection model.


Asunto(s)
Antibacterianos/química , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Proteínas de Escherichia coli/química , Profármacos/química , Tiofenos/química , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacología , División Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/efectos de los fármacos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Profármacos/síntesis química , Profármacos/farmacología , Conformación Proteica/efectos de los fármacos , Salmonella/química , Salmonella/efectos de los fármacos , Salmonella/patogenicidad , Shigella/química , Shigella/efectos de los fármacos , Shigella/patogenicidad , Tiofenos/síntesis química , Tiofenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA