Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
AIDS ; 38(4): 455-464, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976073

RESUMEN

OBJECTIVES: We wished to assess time to protection from HIV-1 infection following oral tenofovir disoproxil and emtricitabine (TDF/FTC) as preexposure prophylaxis (PrEP), using ex-vivo rectal tissue infections and drug concentration measures in blood and rectal tissue. DESIGN/METHODS: Participants from the ANRS PREVENIR study (NCT03113123) were offered this sub-study after a 14-day wash-out. We used an ex-vivo model to evaluate rectal tissue HIV-1 susceptibility before and after PrEP, 2 h after two pills or 7 days of a daily pill of TDF/FTC. PrEP efficacy was expressed by the difference (after-before) of 14-day cumulative p24 antigen levels. TFV-DP and FTC-TP levels were measured in rectal tissue and PBMCs and correlated with HIV-1 infection. RESULTS: Twelve and 11 men were analyzed in the 2 h-double dose and 7 days-single dose groups, respectively. Cumulative p24 differences after-before PrEP were -144 pg/ml/mg (IQR[-259;-108]) for the 2 h-double dose group ( P  = 0.0005) and -179 pg/ml/mg (IQR [-253;-86]) for the 7 days-single dose group ( P  = 0.001), with no differences between groups ( P  = 0.93). Rectal TFV-DP was below quantification after a double dose, but FTC-TP levels were similar to levels at 7 days. There was a significant correlation between rectal FTC-TP levels and p24 changes after a double dose ( R  = -0.84; P  = 0.0001). CONCLUSION: Oral TDF/FTC provided similar protection against HIV-1 infection of rectal tissue 2 h after a double dose or 7 days of a daily dose. At 2 h, this protection seems driven by high FTC-TP concentrations in rectal tissue. This confirms the importance of combining TDF and FTC to achieve early protection.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Profilaxis Pre-Exposición , Masculino , Humanos , Tenofovir , Emtricitabina , Infecciones por VIH/prevención & control , Infecciones por VIH/tratamiento farmacológico , Fármacos Anti-VIH/uso terapéutico , Seropositividad para VIH/tratamiento farmacológico
2.
Cell Mol Life Sci ; 80(11): 326, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833515

RESUMEN

The hepatitis E virus (HEV) is an underestimated RNA virus of which the viral life cycle and pathogenicity remain partially understood and for which specific antivirals are lacking. The virus exists in two forms: nonenveloped HEV that is shed in feces and transmits between hosts; and membrane-associated, quasi-enveloped HEV that circulates in the blood. It is suggested that both forms employ different mechanisms for cellular entry and internalization but little is known about the exact mechanisms. Interestingly, the membrane of enveloped HEV is enriched with phosphatidylserine, a natural ligand for the T-cell immunoglobulin and mucin domain-containing protein 1 (TIM1) during apoptosis and involved in 'apoptotic mimicry', a process by which viruses hijack the apoptosis pathway to promote infection. We here investigated the role of TIM1 in the entry process of HEV. We determined that HEV infection with particles derived from culture supernatant, which are cloaked by host-derived membranes (eHEV), was significantly impaired after knockout of TIM1, whereas infection with intracellular HEV particles (iHEV) was unaffected. eHEV infection was restored upon TIM1 expression; and enhanced after ectopic TIM1 expression. The significance of TIM1 during entry was further confirmed by viral binding assay, and point mutations of the PS-binding pocket diminished eHEV infection. In addition, Annexin V, a PS-binding molecule also significantly reduced infection. Taken together, our findings support a role for TIM1 in eHEV-mediated cell entry, facilitated by the PS present on the viral membrane, a strategy HEV may use to promote viral spread throughout the infected body.


Asunto(s)
Virus de la Hepatitis E , Virus , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/metabolismo , Internalización del Virus , Receptores de Superficie Celular/metabolismo
3.
BMC Infect Dis ; 23(1): 74, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747162

RESUMEN

BACKGROUND: Following kidney transplantation, BK virus associated nephropathy (BKVN) occurs in 1 to 10% of kidney transplant recipients (KTR) and represents a major cause of graft loss. We aim at identifying factors associated with biopsy proven BKVN among KTR. METHODS: We conducted a retrospective case-control study including all KTR with a biopsy-proven diagnosis of BKVN between 2005 and 2019. Clinical characteristics and outcome were described. For each case, one control KTR without BKV infection was identified and matched by age, transplant date, and donor status. Factors associated with BKVN diagnosis were identified using exact conditional logistic regression. Comparative survival was described using Kaplan-Meier estimator. RESULTS: Sixty-four cases of BKVN were identified among 1737 new kidney transplantation (3.7% prevalence). Clinical characteristics did not differ between groups, except for a higher c-PRA among cases. BKVN occurred in a median time of 11 (5-14.5) months after KT, and was associated with a significantly impaired graft function at diagnosis. Following BKVN, 61 (95%) of the patients had immunosuppression reduction, which led to BKV DNAemia resolution in 49% of cases. In multivariate analysis, factors associated with BKVN diagnosis were lymphopenia < 500/mm3 and a prednisone dose > 7.5 mg/day. Median duration of follow-up was 40 months for both groups. BKVN was associated with a significantly increased risk of graft rejection (P = 0.02) and return to dialysis (P = 0.01). CONCLUSIONS: BKVN remains a severe complication in KTR and is associated with an increased risk for acute rejection and return to dialysis. Lymphopenia below 500/mm3 and corticosteroid maintenance therapy are significantly associated with biopsy-proven BKVN diagnosis.


Asunto(s)
Virus BK , Enfermedades Renales , Trasplante de Riñón , Linfopenia , Nefritis Intersticial , Infecciones por Polyomavirus , Infecciones Tumorales por Virus , Humanos , Trasplante de Riñón/efectos adversos , Estudios de Casos y Controles , Estudios Retrospectivos , Enfermedades Renales/epidemiología , Nefritis Intersticial/etiología , Receptores de Trasplantes , Factores de Riesgo , Linfopenia/complicaciones , Infecciones por Polyomavirus/diagnóstico , Infecciones Tumorales por Virus/epidemiología , Rechazo de Injerto
4.
Transpl Infect Dis ; 25(2): e14012, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36748721

RESUMEN

BACKGROUND: Among kidney transplant recipients (KTR) with BK virus associated nephropathy (BKVN), BKV genotypes' evolution and anti-BKV humoral response are not well established. We aim to analyze BKV replication and genetic evolution following transplantation, and characterize concomitant anti-BKV-VP1 humoral response. METHODS: We retrospectively analyzed 32 cases of biopsy-proven BKVN. Stored plasma and kidney biopsies were tested for BKV viral load, and VP1 sequencing performed on positive samples. BKV-VP1 genotype-specific neutralizing antibodies (NAbs) titers were determined at transplantation and BKVN. RESULTS: At the time of BKVN diagnosis, BKV viral load was 8.2 log10 IU/106 cells and 5.4 log10 IU/mL in kidney and plasma, respectively. VP1 sequencing identified the same BKV-subtype in both compartments in 31/32 cases. At the time of transplantation, 8/20 (40%) of biopsies tested positive for BKV detection, whereas concomitant BKV viremia was negative. VP1 sequencing identified a different subtype compared to BKVN in 5/6 of these samples. This was confirmed following transplantation: 8 patients had a BKV+ biopsy before BKV viremia, and VP1 sequencing identified a different subtype compared to BKVN in all of them. After the onset of BKV viremia and prior to BKVN diagnosis, the BKV subtype in BKV+ plasma and kidney biopsy was the same as the one isolated at BKVN. BKV-VP1 NAbs titers were significantly higher at the time of BKVN compared to transplantation (p = .0031), with similar titers across genotypes. CONCLUSION: Altogether, our data suggest that among some KTR with BKVN, the BKV genotype from the donor may not be responsible for BKVN pathogenesis.


Asunto(s)
Virus BK , Enfermedades Renales , Trasplante de Riñón , Nefritis Intersticial , Infecciones por Polyomavirus , Infecciones Tumorales por Virus , Humanos , Trasplante de Riñón/efectos adversos , Viremia/complicaciones , Estudios Retrospectivos , Receptores de Trasplantes , Genotipo
5.
Front Immunol ; 13: 1000861, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483552

RESUMEN

Unlike other Flaviviruses, Zika virus (ZIKV) infection during the first trimester of pregnancy causes severe pregnancy outcomes including the devastating microcephaly and diseases associated with placental dysfunctions. We have previously reported that the maternal decidua basalis, the major maternal-fetal interface, serves as a replication platform enabling virus amplification before dissemination to the fetal compartment. However, the rate of congenital infection is quite low, suggesting the presence of a natural barrier against viral infection. Using primary cells from first-trimester pregnancy samples, we investigated in this study how the maternal decidua can interfere with ZIKV infection. Our study reveals that whether through their interactions with dNK cells, the main immune cell population of the first-trimester decidua, or their production of proinflammatory cytokines, decidual stromal cells (DSCs) are the main regulators of ZIKV infection during pregnancy. We also validate the functional role of AXL as a crucial receptor for ZIKV entry in DSCs and demonstrate that targeted inhibition of ligand-receptor interaction at the early stage of the infection is effective in drastically reducing virus pathogenesis at the maternal-fetal interface. Collectively, our results provide insights into the mechanisms through which ZIKV infection and spreading can be limited. The strategy of circumventing viral entry at the maternal-fetus interface limits virus dissemination to fetal tissues, thereby preventing congenital abnormalities.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Humanos , Placenta
6.
Cell Rep ; 39(4): 110744, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35477000

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic, which has led to a devastating global health crisis. The emergence of variants that escape neutralizing responses emphasizes the urgent need to deepen our understanding of SARS-CoV-2 biology. Using a comprehensive identification of RNA-binding proteins (RBPs) by mass spectrometry (ChIRP-MS) approach, we identify 107 high-confidence cellular factors that interact with the SARS-CoV-2 genome during infection. By systematically knocking down their expression in human lung epithelial cells, we find that the majority of the identified RBPs are SARS-CoV-2 proviral factors. In particular, we show that HNRNPA2B1, ILF3, QKI, and SFPQ interact with the SARS-CoV-2 genome and promote viral RNA amplification. Our study provides valuable resources for future investigations into the mechanisms of SARS-CoV-2 replication and the identification of host-centered antiviral therapies.


Asunto(s)
COVID-19 , ARN Viral , COVID-19/genética , Humanos , Pandemias , ARN Viral/genética , SARS-CoV-2/genética , Replicación Viral/genética
7.
J Virol ; 96(7): e0196221, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35266803

RESUMEN

Dengue virus (DENV) is a mosquito-borne flavivirus responsible for dengue disease, a major human health concern for which no effective treatment is available. DENV relies heavily on the host cellular machinery for productive infection. Here, we show that the scaffold protein RACK1, which is part of the DENV replication complex, mediates infection by binding to the 40S ribosomal subunit. Mass spectrometry analysis of RACK1 partners coupled to an RNA interference screen-identified Vigilin and SERBP1 as DENV host-dependency factors. Both are RNA-binding proteins that interact with the DENV genome. Genetic ablation of Vigilin or SERBP1 rendered cells poorly susceptible to DENV, as well as related flaviviruses, by hampering the translation and replication steps. Finally, we established that a Vigilin or SERBP1 mutant lacking RACK1 binding but still interacting with the viral RNA is unable to mediate DENV infection. We propose that RACK1 recruits Vigilin and SERBP1, linking the DENV genome to the translation machinery for efficient infection. IMPORTANCE We recently identified the scaffolding RACK1 protein as an important host-dependency factor for dengue virus (DENV), a positive-stranded RNA virus responsible for the most prevalent mosquito-borne viral disease worldwide. Here, we have performed the first RACK1 interactome in human cells and identified Vigilin and SERBP1 as DENV host-dependency factors. Both are RNA-binding proteins that interact with the DENV RNA to regulate viral replication. Importantly, Vigilin and SERBP1 interact with RACK1 and the DENV viral RNA (vRNA) to mediate viral replication. Overall, our results suggest that RACK1 acts as a binding platform at the surface of the 40S ribosomal subunit to recruit Vigilin and SERBP1, which may therefore function as linkers between the viral RNA and the translation machinery to facilitate infection.


Asunto(s)
Virus del Dengue , Dengue , Proteínas de Unión al ARN , Animales , Dengue/fisiopatología , Virus del Dengue/fisiología , Interacciones Microbiota-Huesped/fisiología , Humanos , Proteínas de Neoplasias/metabolismo , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Cinasa C Activada/metabolismo , Replicación Viral
8.
Annu Rev Virol ; 8(1): 327-347, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34255544

RESUMEN

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for major outbreaks of disease since 2004 in the Indian Ocean islands, South east Asia, and the Americas. CHIKV causes debilitating musculoskeletal disorders in humans that are characterized by fever, rash, polyarthralgia, and myalgia. The disease is often self-limiting and nonlethal; however, some patients experience atypical or severe clinical manifestations, as well as a chronic rheumatic syndrome. Unfortunately, no efficient antivirals against CHIKV infection are available so far, highlighting the importance of deepening our knowledge of CHIKV host cell interactions and viral replication strategies. In this review, we discuss recent breakthroughs in the molecular mechanisms that regulate CHIKV infection and lay down the foundations to understand viral pathogenesis. We describe the role of the recently identified host factors co-opted by the virus for infection and pathogenesis, and emphasize the importance of CHIKV nonstructural proteins in both replication complex assembly and host immune response evasion.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Antivirales , Fiebre Chikungunya/epidemiología , Virus Chikungunya/genética , Humanos , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología
9.
C R Biol ; 343(4): 79-89, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33988325

RESUMEN

Chikungunya is an infectious disease caused by the chikungunya virus (CHIKV), an alphavirus transmitted to humans by Aedes mosquitoes, and for which there is no licensed vaccine nor antiviral treatments. By using a loss-of-function genetic screen, we have recently identified the FHL1 protein as an essential host factor for CHIKV tropism and pathogenesis. FHL1 is highly expressed in muscles cells and fibroblasts, the main CHIKV-target cells. FHL1 interacts with the viral protein nsP3 and plays a critical role in CHIKV genome amplification. Experiments in vivo performed in FHL1-deficient mice have shown that these animals are resistant to infection and do not develop muscular lesions. Altogether these observations, published in the journal Nature [1], show that FHL1 is a key host factor for CHIKV pathogenesis and identify the interaction between FHL1 and nsP3 as a promising target for the development of new antiviral strategies.


Le chikungunya est une maladie infectieuse causée par le virus chikungunya (CHIKV), un alphavirus transmis à l'Homme par les moustiques Aedes et contre lequel il n'existe ni vaccin, ni traitements antiviraux. En utilisant une approche de crible génétique par perte de fonction, nous avons récemment identifié la protéine FHL1 comme un facteur cellulaire essentiel pour le tropisme et la pathogénèse du CHIKV. FHL1 est une molécule présente majoritairement dans les cellules musculaires et les fibroblastes, les cibles privilégiées de CHIKV. FHL1 interagit avec la protéine virale nsP3 et joue un rôle décisif dans le mécanisme d'amplification du génome de CHIKV. Des expériences in vivo chez des souris déficientes pour FHL1 ont montré que ces animaux sont résistants à l'infection et ne développent pas de lésions musculaires. L'ensemble de ces observations publiées dans la revue Nature [1] montrent que FHL1 est un facteur cellulaire clé pour la pathogénèse de CHIKV et identifient l'interaction entre FHL1 et nsp3 comme une cible prometteuse pour le développement de nouvelles stratégies antivirales.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Virus Chikungunya/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Dominio LIM , Ratones , Proteínas Musculares , Tropismo , Proteínas no Estructurales Virales , Replicación Viral
10.
J Exp Med ; 218(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33533916

RESUMEN

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , COVID-19/metabolismo , Plasticidad de la Célula/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Proteínas de Transporte de Membrana/metabolismo , SARS-CoV-2/inmunología , Biomarcadores , COVID-19/virología , Citocinas/metabolismo , Células Dendríticas/virología , Interacciones Huésped-Patógeno/inmunología , Humanos , Hidroxicloroquina/farmacología , Hidroxicloroquina/uso terapéutico , Inmunomodulación , Inmunofenotipificación , Mediadores de Inflamación/metabolismo , Interferón Tipo I/metabolismo , Interferones/metabolismo , Interferón lambda , Tratamiento Farmacológico de COVID-19
11.
J Antimicrob Chemother ; 76(5): 1286-1293, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33624081

RESUMEN

BACKGROUND: The ANRS12286/MOBIDIP trial showed that boosted protease inhibitor (bPI) plus lamivudine dual therapy was superior to bPI monotherapy as maintenance treatment in subjects with a history of M184V mutation. OBJECTIVES: We aimed to deep analyse the detection of M184V/I variants at time of switch and at the time of virological failure (VF). METHODS: Ultra-deep sequencing (UDS) was performed on proviral HIV-DNA at inclusion among 265 patients enrolled in the ANRS 12026/MOBIDIP trial, and on plasma from 31 patients experiencing VF. The proportion of M184V/I variants was described and the association between the M184V/I mutation at 1% of threshold and VF was explored with logistic regression models. RESULTS: M184V and I mutations were detected in HIV-DNA for 173/252 (69%) and 31/252 (12%) of participants, respectively. Longer duration of first-line treatment, higher plasma viral load at first-line treatment failure and higher baseline HIV-DNA load were associated with the archived M184V. M184I mutation was always associated with a STOP codon, suggesting defective virus. The 48 week estimated probability of remaining free from VF was comparable with or without the M184V/I mutation for dual therapy. At failure, M184V and major PI mutations were detected in 1/17 and 5/15 patients in the bPI arm and in 2/2 and 0/3 in the bPI+lamivudine arm, respectively. CONCLUSIONS: Using UDS evidenced that archiving of M184V in HIV-DNA is heterogeneous despite past historical M184V in 96% of cases. The antiviral efficacy of lamivudine-based dual therapy regimens is mainly due to the residual lamivudine activity.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Farmacorresistencia Viral , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lamivudine/uso terapéutico , Mutación , Inhibidores de Proteasas/uso terapéutico , Carga Viral
12.
bioRxiv ; 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33442685

RESUMEN

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here, we have isolated primary SARS-CoV-2 viral strains, and studied their interaction with human plasmacytoid pre-dendritic cells (pDC), a key player in antiviral immunity. We show that pDC are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.

13.
Open Forum Infect Dis ; 7(2): ofz549, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32083147

RESUMEN

BACKGROUND: In view of the fast viremia decline obtained with integrase inhibitors, we studied the respective effects of initiating efavirenz (EFV) or raltegravir (RAL)-based antiretroviral therapy (ART) regimens on human immunodeficiency virus (HIV)-1 deoxyribonucleic acid (DNA) levels and inflammation biomarkers in the highly inflammatory setting of advanced HIV-1 disease with tuberculosis (TB) coinfection. METHODS: We followed cell-associated HIV-1 DNA, high-sensitivity C-reactive protein (hsCRP), interleukin 6 (IL-6), soluble CD14 and D-Dimer levels for 48 weeks after ART initiation in the participants to the ANRS12-180 REFLATE-TB study. This phase II open-label randomized study included ART-naive people with HIV and TB treated with rifampicin to receive RAL 400 mg twice daily (RAL400), RAL 800 mg twice daily (RAL800) or EFV 600 mg QD with tenofovir and lamivudine. RESULTS: In 146 participants, the median (interquartile range [IQR]) week (W)0 HIV-1 DNA level was 4.7 (IQR, 4.3-5.1) log10 copies/106 CD4+, and the reduction by W48 was -0.8 log10 copies/106 CD4+ on EFV, -0.9 on RAL400, and -1.0 on RAL800 (P = .74). Baseline median (IQR) hsCRP, IL-6, sCD14, and D-Dimer levels were 6.9 (IQR, 3.3-15.6) mg/L, 7.3 (IQR, 3.5-12.3) pg/mL, 3221 (IQR, 2383-4130) ng/mL, and 975 (IQR, 535-1970) ng/mL. All biomarker levels decreased over the study: the overall W0-W48 mean (95% confidence interval) fold-change on ART was 0.37 (IQR, 0.28-0.48) for hsCRP, 0.42 (IQR, 0.35-0.51) for IL-6, 0.51 (IQR, 0.47-0.56) for sCD14, and 0.39 (IQR, 0.32-0.47) for D-Dimers. There were no differences in biomarker reduction across treatment arms. CONCLUSIONS: In participants with HIV and TB, EFV, RAL400, or RAL800 effectively and equally reduced inflammation and HIV-1 DNA levels.

14.
Sci Rep ; 10(1): 2409, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051463

RESUMEN

We used next-generation sequencing to evaluate the quantity and genetic diversity of the HIV envelope gene in various compartments in eight patients with acute infection. Plasma (PL) and seminal fluid (SF) were available for all patients, whole blood (WB) for seven, non-spermatozoid cells (NSC) for four, and saliva (SAL) for three. Median HIV-1 RNA was 6.2 log10 copies/mL [IQR: 5.5-6.95] in PL, 4.9 log10 copies/mL [IQR: 4.25-5.29] in SF, and 4.9 log10 copies/mL [IQR: 4.46-5.09] in SAL. Median HIV-1 DNA was 4.1 log10 copies/106 PBMCs [IQR: 3.15-4.15] in WB and 2.6 log10 copies /106 Cells [IQR: 2.23-2.75] in NSC. The median overall diversity per patient varied from 0.0005 to 0.0232, suggesting very low diversity, confirmed by the clonal aspect of most of the phylogenetic trees. One single haplotype was present in all compartments for five patients in the earliest stage of infection. Evidence of higher diversity was established for two patients in PL and WB, suggesting compartmentalization. Our study shows low diversity of the env gene in the first stages of infection followed by the rapid establishment of cellular reservoirs of the virus. Such clonality could be exploited in the search for early patient-specific therapeutic solutions.


Asunto(s)
Infecciones por VIH/virología , VIH-1/genética , Adulto , Variación Genética , Humanos , Masculino , Filogenia , ARN Viral/análisis , ARN Viral/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
15.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31915280

RESUMEN

Dengue virus (DENV) is a mosquito-borne flavivirus responsible for dengue disease, a major human health concern for which no specific therapies are available. Like other viruses, DENV relies heavily on the host cellular machinery for productive infection. In this study, we performed a genome-wide CRISPR-Cas9 screen using haploid HAP1 cells to identify host genes important for DENV infection. We identified DPM1 and -3, two subunits of the endoplasmic reticulum (ER) resident dolichol-phosphate mannose synthase (DPMS) complex, as host dependency factors for DENV and other related flaviviruses, such as Zika virus (ZIKV). The DPMS complex catalyzes the synthesis of dolichol-phosphate mannose (DPM), which serves as mannosyl donor in pathways leading to N-glycosylation, glycosylphosphatidylinositol (GPI) anchor biosynthesis, and C- or O-mannosylation of proteins in the ER lumen. Mutation in the DXD motif of DPM1, which is essential for its catalytic activity, abolished DPMS-mediated DENV infection. Similarly, genetic ablation of ALG3, a mannosyltransferase that transfers mannose to lipid-linked oligosaccharide (LLO), rendered cells poorly susceptible to DENV. We also established that in cells deficient for DPMS activity, viral RNA amplification is hampered and truncated oligosaccharides are transferred to the viral prM and E glycoproteins, affecting their proper folding. Overall, our study provides new insights into the host-dependent mechanisms of DENV infection and supports current therapeutic approaches using glycosylation inhibitors to treat DENV infection.IMPORTANCE Dengue disease, which is caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease in humans and is a major global health concern. DENV encodes only few proteins and relies on the host cell machinery to accomplish its life cycle. The identification of the host factors important for DENV infection is needed to propose new targets for antiviral intervention. Using a genome-wide CRISPR-Cas9 screen, we identified DPM1 and -3, two subunits of the DPMS complex, as important host factors for the replication of DENV as well as other related viruses such as Zika virus. We established that DPMS complex plays dual roles during viral infection, both regulating viral RNA replication and promoting viral structural glycoprotein folding/stability. These results provide insights into the host molecules exploited by DENV and other flaviviruses to facilitate their life cycle.


Asunto(s)
Sistemas CRISPR-Cas , Virus del Dengue/fisiología , Dengue/virología , Manosiltransferasas/metabolismo , Animales , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Glicosilfosfatidilinositoles/metabolismo , Células HEK293 , Humanos , Manosa/química , Oligosacáridos/química , ARN Guía de Kinetoplastida/metabolismo , ARN Viral/química , Células Vero , Replicación Viral
16.
Nature ; 574(7777): 259-263, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554973

RESUMEN

Chikungunya virus (CHIKV) is a re-emerging alphavirus that is transmitted to humans by mosquito bites and causes musculoskeletal and joint pain1,2. Despite intensive investigations, the human cellular factors that are critical for CHIKV infection remain unknown, hampering the understanding of viral pathogenesis and the development of anti-CHIKV therapies. Here we identified the four-and-a-half LIM domain protein 1 (FHL1)3 as a host factor that is required for CHIKV permissiveness and pathogenesis in humans and mice. Ablation of FHL1 expression results in the inhibition of infection by several CHIKV strains and o'nyong-nyong virus, but not by other alphaviruses and flaviviruses. Conversely, expression of FHL1 promotes CHIKV infection in cells that do not normally express it. FHL1 interacts directly with the hypervariable domain of the nsP3 protein of CHIKV and is essential for the replication of viral RNA. FHL1 is highly expressed in CHIKV-target cells and is particularly abundant in muscles3,4. Dermal fibroblasts and muscle cells derived from patients with Emery-Dreifuss muscular dystrophy that lack functional FHL15 are resistant to CHIKV infection. Furthermore,  CHIKV infection  is undetectable in Fhl1-knockout mice. Overall, this study shows that FHL1 is a key factor expressed by the host that enables CHIKV infection and identifies the interaction between nsP3 and FHL1 as a promising target for the development of anti-CHIKV therapies.


Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/patogenicidad , Factores Celulares Derivados del Huésped/metabolismo , Interacciones Huésped-Patógeno , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas Musculares/metabolismo , Animales , Células Cultivadas , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/genética , Virus Chikungunya/crecimiento & desarrollo , Femenino , Fibroblastos/virología , Células HEK293 , Factores Celulares Derivados del Huésped/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/deficiencia , Proteínas con Dominio LIM/genética , Masculino , Ratones , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Mioblastos/virología , Virus O'nyong-nyong/crecimiento & desarrollo , Virus O'nyong-nyong/patogenicidad , Unión Proteica , ARN Viral/biosíntesis , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
17.
J Virol ; 93(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31534046

RESUMEN

The endoplasmic reticulum (ER) is the site for Zika virus (ZIKV) replication and is central to the cytopathic effects observed in infected cells. ZIKV induces the formation of ER-derived large cytoplasmic vacuoles followed by "implosive" cell death. Little is known about the nature of the ER factors that regulate flavivirus replication. Atlastins (ATL1, -2, and -3) are dynamin-related GTPases that control the structure and the dynamics of the ER membrane. We show here that ZIKV replication is significantly decreased in the absence of ATL proteins. The appearance of infected cells is delayed, the levels of intracellular viral proteins and released virus are reduced, and the cytopathic effects are strongly impaired. We further show that ATL3 is recruited to viral replication sites and interacts with the nonstructural viral proteins NS2A and NS2B3. Thus, proteins that shape and maintain the ER tubular network ensure efficient ZIKV replication.IMPORTANCE Zika virus (ZIKV) is an emerging virus associated with Guillain-Barré syndrome, and fetal microcephaly as well as other neurological complications. There is no vaccine or specific antiviral treatment against ZIKV. We found that endoplasmic reticulum (ER)-shaping atlastin proteins (ATL1, -2, and -3), which induce ER membrane fusion, facilitate ZIKV replication. We show that ATL3 is recruited to the viral replication site and colocalize with the viral proteins NS2A and NS2B3. The results provide insights into host factors used by ZIKV to enhance its replication.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Replicación Viral/fisiología , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología , Virus Zika/fisiología , Antivirales/farmacología , Efecto Citopatogénico Viral , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Proteínas de la Membrana , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Liberación del Virus , Virus Zika/efectos de los fármacos
18.
Cell Rep ; 23(6): 1779-1793, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742433

RESUMEN

Dengue virus (DENV) is a major human pathogen causing millions of infections yearly. Despite intensive investigations, a DENV receptor that directly participates in virus internalization has not yet been characterized. Here, we report that the phosphatidylserine receptor TIM-1 is an authentic DENV entry receptor that plays an active role in virus endocytosis. Genetic ablation of TIM-1 strongly impaired DENV infection. Total internal reflection fluorescence microscopy analyses of live infected cells show that TIM-1 is mostly confined in clathrin-coated pits and is co-internalized with DENV during viral entry. TIM-1 is ubiquitinated at two lysine residues of its cytoplasmic domain, and this modification is required for DENV endocytosis. Furthermore, STAM-1, a component of the ESCRT-0 complex involved in intracellular trafficking of ubiquitinated cargos, interacts with TIM-1 and is required for DENV infection. Overall, our results show that TIM-1 is the first bona fide receptor identified for DENV.


Asunto(s)
Virus del Dengue/fisiología , Dengue/virología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Ubiquitinación , Internalización del Virus , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Virus del Dengue/ultraestructura , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Eliminación de Gen , Receptor Celular 1 del Virus de la Hepatitis A/química , Receptor Celular 1 del Virus de la Hepatitis A/genética , Humanos , Fosfoproteínas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...