RESUMEN
The formamidase (FMD) enzyme plays an important role in fungal thriving by releasing a secondary nitrogen source as a product of its activity. In Paracoccidioides species, previous studies have demonstrated the upregulation of this enzyme in a wide range of starvation and infective-like conditions. However, Paracoccidioides lutzii formamidase has not yet been defined as a virulence factor. Here, by employing in vivo infections using an fmd-silenced strain in Galleria mellonella larvae model, we demonstrate the influence of formamidase in P. lutzii's immune stimulation and pathogenicity. The formamidase silencing resulted in improper arrangement of the nodules, poor melanogenesis and decreased fungal burden. Thus, we suggest that formamidase may be a piece composing the process of molecular recognition by Galleria immune cells. Furthermore, formamidase silencing doubled the observed survival rate of the larvae, demonstrating its importance in fungal virulence in vivo. Therefore, our findings indicate that formamidase contributes to Galleria's immune incitement and establishes the role of this enzyme as a P. lutzii virulence factor.
Asunto(s)
Larva , Mariposas Nocturnas , Paracoccidioides , Factores de Virulencia , Animales , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Larva/microbiología , Mariposas Nocturnas/microbiología , Paracoccidioides/patogenicidad , Paracoccidioides/enzimología , Paracoccidioides/genética , Virulencia , Paracoccidioidomicosis/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Animales de Enfermedad , Silenciador del GenRESUMEN
Skin secretions from Patagonian ground frogs, Eupsophus vertebralis, have previously been reported as a potent proteinaceous adhesive with potential biomedical applications. Here, we conducted a rheological analysis indicating the mechanical robustness of these secretions, with a storage modulus ranging from 1 to 10 Pa. In addition, antimicrobial and cytotoxicity assays were performed, revealing no antimicrobial activity against both the Gram-positive and Gram-negative bacteria. The cytotoxicity results were intriguing, as three samples showed no harm, and one exhibited a severe cytotoxic effect on the human cell line MG63. These properties, as indicated by these preliminary results, reinforce their potential for practical applications in the industrial and medical sectors.
RESUMEN
Farnesol is a natural essential oil with antimicrobial properties. Complexation of farnesol in chitosan nanoparticles can be useful to improve its bioavailability and potentiate its antifungal capabilities such as inhibition of hyphal and biofilm formation. The aim of this study was to develop and characterize chitosan nanoparticles with farnesol (NF) and evaluate their toxicity and antifungal action on C. albicans in vivo. The NF were prepared by the ionic gelation method and showed physicochemical characteristics such as diameter less than 200 nm, monodisperse distribution, positive zeta potential, spherical morphology, and stability after 120 days of storage. In the evaluation of toxicity in Galleria mellonella, NF did not reduce the survival rate, indicating that there was no toxicity in vivo at the doses tested. In the assays with G. mellonella infected by C. albicans, the larvae treated with NF had a high survival rate after 48 h, with a significant reduction of the fungal load and inhibition of the formation of biofilms and hyphae. In the murine model of vulvovaginal candidiasis (VVC), histopathological analysis showed a reduction in inflammatory parameters, fungal burden, and hyphal inhibition in mice treated with NF. The produced nanoparticles can be a promising alternative to inhibit C. albicans infection.
Asunto(s)
Quitosano , Nanopartículas , Animales , Ratones , Candida albicans , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Farnesol/farmacología , Quitosano/farmacología , Biopelículas , Nanopartículas/químicaRESUMEN
Vulvovaginal candidiasis (VVC) is a fungal infection caused mainly by Candida albicans. The treatment of VVC with azoles has been impaired due to the increased cases of resistance presented by this pathogen. The aim of the present study was to investigate the antifungal activity of mucoadhesive chitosan nanoparticles encapsulating both green propolis and fluconazole for topical use in the treatment of VVC. The nanoparticles were prepared by the ionic gelation method, resulting in a size of 316.5 nm containing 22 mg/kg of green propolis and 2.4 mg/kg of fluconazole. The nanoparticles were non-toxic in vitro using red blood cells or in vivo in a Galleria mellonella toxicity model. The treatment of female BALB/c mice infected by C. albicans ATCC 10231 with topical nanoparticles co-encapsulating fluconazole and green propolis was effective even using a fluconazole amount 20 times lower than the amount of miconazole nitrate 2% cream. Considering that the mucoadhesive property of chitosan, which is known to allow a prolonged retention time of the compounds at the mucous epithelia, the antifungal potential of the phenols and flavonoids present in green propolis may have favored the effectiveness of this treatment. These results indicate that this formulation of topical use for fluconazole associated with green propolis can be used as a promising approach to therapy for the treatment of VVC, thus contributing to reducing the development of resistance to azoles.
Vulvovaginal candidiasis is a fungal infection for which we search for alternatives for its treatment. Thus, a nanoparticle formulation based on fluconazole and green propolis was developed. These nanoparticles were tested, and we obtained adequate results in laboratory tests.
Asunto(s)
Candidiasis Vulvovaginal , Quitosano , Nanopartículas , Própolis , Femenino , Animales , Ratones , Fluconazol/uso terapéutico , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/microbiología , Candidiasis Vulvovaginal/veterinaria , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Própolis/uso terapéutico , Modelos Animales de Enfermedad , Candida albicans , Pruebas de Sensibilidad Microbiana/veterinariaRESUMEN
In this work, scaffolds based on poly(hydroxybutyrate) (PHB) and micronized bacterial cellulose (BC) were produced through 3D printing. Filaments for the printing were obtained by varying the percentage of micronized BC (0.25, 0.50, 1.00, and 2.00%) inserted in relation to the PHB matrix. Despite the varying concentrations of BC, the biocomposite filaments predominantly contained PHB functional groups, as Fourier transform infrared spectroscopy (FTIR) demonstrated. Thermogravimetric analyses (i.e., TG and DTG) of the filaments showed that the peak temperature (Tpeak) of PHB degradation decreased as the concentration of BC increased, with the lowest being 248 °C, referring to the biocomposite filament PHB/2.0% BC, which has the highest concentration of BC. Although there was a variation in the thermal behavior of the filaments, it was not significant enough to make printing impossible, considering that the PHB melting temperature was 170 °C. Biological assays indicated the non-cytotoxicity of scaffolds and the provision of cell anchorage sites. The results obtained in this research open up new paths for the application of this innovation in tissue engineering.
RESUMEN
Paracoccidioidomycosis (PCM) is a fungal infection caused by the thermodimorphic Paracoccidioides sp. PCM mainly affects the lungs, but, if it is not contained by the immune response, the disease can spread systemically. An immune response derived predominantly from Th1 and Th17 T cell subsets facilitates the elimination of Paracoccidioides cells. In the present work, we evaluated the biodistribution of a prototype vaccine based on the immunodominant and protective P. brasiliensis P10 peptide within chitosan nanoparticles in BALB/c mice infected with P. brasiliensis strain 18 (Pb18). The generated fluorescent (FITC or Cy5.5) or non-fluorescent chitosan nanoparticles ranged in diameter from 230 to 350 nm, and both displayed a Z potential of +20 mV. Most chitosan nanoparticles were found in the upper airway, with smaller amounts localized in the trachea and lungs. The nanoparticles complexed or associated with the P10 peptide were able to reduce the fungal load, and the use of the chitosan nanoparticles reduced the necessary number of doses to achieve fungal reduction. Both vaccines were able to induce a Th1 and Th17 immune response. These data demonstrates that the chitosan P10 nanoparticles are an excellent candidate vaccine for the treatment of PCM.
RESUMEN
Drug delivery systems based on nanotechnology exhibit a number of advantages over traditional pharmacological formulations. Polymeric nanoparticles are commonly used as delivery systems and consist of synthetic or natural polymers that protect drugs from degradation in physiological environments. In this context, indolamine melatonin has been associated with several biological functions, including antioxidant, antitumor, immunoregulatory, neuroprotective, and cardioprotective effects. However, its availability, half-life, and absorption depend upon the route of administration, and this can limit its therapeutic potential. An alternative is the use of polymeric nanoparticle formulations associated with melatonin to increase its bioavailability and therapeutic dose at sites of interest. Thus, the objective of this review is to provide a general and concise approach to the therapeutic association between melatonin and polymeric nanoparticles applied to different biological disorders and to also highlight its advantages and potential applications compared to those of the typical drug formulations that are available.
Asunto(s)
Melatonina , Nanopartículas , Humanos , Melatonina/farmacología , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas/metabolismo , PolímerosRESUMEN
The accumulation of chitin waste from the seafood industry is a serious environmental problem. However, this residue can be degraded by chitinases and its subproducts, such as chitosan, economically exploited. In this study, a chitinase producer bacteria, identified as Paenibacillus illinoisensis, was isolated from the Brazilian coastal city of Terra de Areia - Rio Grande Do Sul (RS) and was immobilized within alginate beads to evaluate its chitinase production. The alginate beads containing cells presented an average size of 4 mm, 99% of immobilization efficiency and increased the enzymatic activity in 40.71% compared to the free cells. The biomass during enzymatic production increased 62.01% and the total cells leaked from the alginate beads corresponded to 6.46% after 96 h. Immobilized cells were reused in a sequential batch system and remained stable for production for up to four 96-h cycles, decreasing only 21.04% of the initial activity at the end of the fourth cycle. Therefore, the methodology used for cell immobilization resulted in adequate beads to maintain cell viability during the enzymatic production, increasing enzymatic activity, showing low cell leakage from the support and appropriate recyclable capacity.
Asunto(s)
Quitinasas , Alginatos/química , Suelo , Brasil , Ácidos Hexurónicos/químicaRESUMEN
Parkinson's disease (PD) is a progressive and chronic neurodegenerative disease of the central nervous system. Early treatment for PD is efficient; however, long-term systemic medication commonly leads to deleterious side-effects. Strategies that enable more selective drug delivery to the brain using smaller dosages, while crossing the complex brain-blood barrier (BBB), are highly desirable to ensure treatment efficacy and decrease/avoid unwanted outcomes. Our goal was to design and test the neurotherapeutic potential of a forefront nanoparticle-based technology composed of albumin/PLGA nanosystems loaded with dopamine (ALNP-DA) in 6-OHDA PD mice model. ALNP-DA effectively crossed the BBB, replenishing dopamine at the nigrostriatal pathway, resulting in significant motor symptom improvement when compared to Lesioned and L-DOPA groups. Notably, ALNP-DA (20 mg/animal dose) additionally up-regulated and restored motor coordination, balance, and sensorimotor performance to non-lesioned (Sham) animal level. Overall, ALNPs represent an innovative, non-invasive nano-therapeutical strategy for PD, considering its efficacy to circumvent the BBB and ultimately deliver the drug of interest to the brain.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Dopamina/administración & dosificación , Dopamina/farmacocinética , Sistemas de Liberación de Medicamentos , Nanopartículas/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Humanos , Masculino , Ratones , Nanopartículas/química , Nanopartículas/ultraestructura , Nanotecnología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/químicaRESUMEN
Biofilms are important virulence factor in infections caused by microorganisms because of its complex structure, which provide resistance to conventional antimicrobials. Strategies involving the use of molecules capable of inhibiting their formation and also act synergistically with conventional drugs have been explored. Farnesol is a molecule present in essential oils and produced by Candida albicans as a quorum sensing component. This sesquiterpene presents inhibitory properties in the formation of microbial biofilms and synergism with antimicrobials used in clinical practice, and can be exploited even for eradication of biofilms formed by drug-resistant microorganisms. Despite this, farnesol has physical and chemical characteristics that can limit its use, such as high hydrophobicity and volatility. Therefore, nanotechnology may represent an option to improve the efficiency of this molecule in high complex environments such as biofilms. Nanostructured systems present important results in the improvement of treatment with different commercial drugs and molecules with therapeutic or preventive potential. The formation of nanoparticles offers advantages such as protection of the incorporated drugs against degradation, improved biodistribution and residence time in specific treatment sites. The combination of farnesol with nanotechnology may be promising for the development of more effective antibiofilm therapies, as it can improve its solubility, reduce volatility, and increase bioavailability. This review summarizes existing data about farnesol, its action on biofilms, and discusses its encapsulation in nanostructured systems. LAY SUMMARY: Farnesol is a natural compound that inhibits the formation of biofilms from different microbial species. The encapsulation of this molecule in nanoparticles is a promising alternative for the development of more effective therapies against biofilms.
Asunto(s)
Biopelículas , Farnesol , Animales , Candida albicans , Farnesol/farmacología , Nanotecnología , Distribución TisularRESUMEN
The earliest interaction between macrophages and Paracoccidioides brasiliensis is particularly important in paracoccidioidomycosis (PCM) progression, and surface proteins play a central role in this process. The present study investigated the contribution of ß2 integrin in P. brasiliensis-macrophage interaction and PCM progression. We infected ß2-low expression (CD18low) and wild type (WT) mice with P. brasiliensis 18. Disease progression was evaluated for fungal burden, lung granulomatous lesions, nitrate levels, and serum antibody production. Besides, the in vitro capacity of macrophages to internalize and kill fungal yeasts was investigated. Our results revealed that CD18low mice infected with Pb18 survived during the time analyzed; their lungs showed fewer granulomas, a lower fungal load, lower levels of nitrate, and production of high levels of IgG1 in comparison to WT animals. Our results revealed that in vitro macrophages from CD18low mice slowly internalized yeast cells, showing a lower fungal burden compared to WT cells. The migration capacity of macrophages was compromised and showed a higher intensity in the lysosome signal when compared with WT mice. Our data suggest that ß2 integrins play an important role in fungal survival inside macrophages, and once phagocytosed, the macrophage may serve as a protective environment for P. brasiliensis.
Asunto(s)
Paracoccidioides , Paracoccidioidomicosis , Animales , Antígenos CD18 , Pulmón , Macrófagos , RatonesRESUMEN
Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America. Since the first description of the disease by Lutz up to the present day, Brazilian researchers have contributed to the understanding of the life cycle of this pathogen and provided the possibility of new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides. In this context, in silico approaches have selected molecules that act on specific targets, such as the thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are already in advanced development stages. In addition, the application of nanostructured systems has addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution of molecular biology and biotechnology to the advances achieved is unquestionable. However, it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment of fungal diseases.
RESUMEN
Aristolochia plants are notable from an ethnopharmacological viewpoint, but the relevance of these species for medicinal purposes has been debated because of their inherent toxicity. The convergence of these contrasting realities can be readily achieved using bioconversion methods, which have been shown to be useful tools for numerous applications, including the detoxification of biomass. In this context, methanolic extracts of leaves from Aristolochia triangularis and Aristolochia gibertii, as well as the feces of Battus polydamas larvae fed with leaves from these plants, were prepared, and their cytotoxic activities were evaluated on a human fibroblast cell line (GM07492). The leaf extracts were found to be cytotoxic, leading to reductions of 42.1 and 33.8% on cell viability, respectively, while the fecal extracts were considered inactive. In addition to evidencing the cytotoxicity of A. triangularis and A. gibertii, these findings demonstrated a potential bioconversion strategy for obtaining aristolochiaceous extracts with reduced toxicity using the larvae of a specialist phytophagous insect, thus renewing expectations in relation to the pharmacological importance of Aristolochia spp. The results were also ecologically relevant, as B. polydamas larvae were found to be able to detoxify compounds from host plants.(AU)
Asunto(s)
Biodegradación Ambiental , Aristolochiaceae , Toxicidad , Línea Celular , Fibroblastos , Insectos , LarvaRESUMEN
Aristolochia plants are notable from an ethnopharmacological viewpoint, but the relevance of these species for medicinal purposes has been debated because of their inherent toxicity. The convergence of these contrasting realities can be readily achieved using bioconversion methods, which have been shown to be useful tools for numerous applications, including the detoxification of biomass. In this context, methanolic extracts of leaves from Aristolochia triangularis and Aristolochia gibertii, as well as the feces of Battus polydamas larvae fed with leaves from these plants, were prepared, and their cytotoxic activities were evaluated on a human fibroblast cell line (GM07492). The leaf extracts were found to be cytotoxic, leading to reductions of 42.1 and 33.8% on cell viability, respectively, while the fecal extracts were considered inactive. In addition to evidencing the cytotoxicity of A. triangularis and A. gibertii, these findings demonstrated a potential bioconversion strategy for obtaining aristolochiaceous extracts with reduced toxicity using the larvae of a specialist phytophagous insect, thus renewing expectations in relation to the pharmacological importance of Aristolochia spp. The results were also ecologically relevant, as B. polydamas larvae were found to be able to detoxify compounds from host plants.(AU)
Asunto(s)
Biodegradación Ambiental , Aristolochiaceae , Toxicidad , Línea Celular , Fibroblastos , Insectos , LarvaRESUMEN
BACKGROUND: Endothelial function assessment may provide important insights into the cardiovascular function and long-term effects of exercise training. Many studies have investigated the possible negative effects on cardiovascular function due to extreme athletic performance, leading to undesirable effects. The purposes of this study were to investigate the acute effects of maximal intensity exercise on endothelium-dependent vasodilation, and to understand the patterns of flow-mediated dilation (FMD) change following maximal exercise in elite female athletes with a high-volume training history. METHODS: Twenty-six elite female soccer players (mean age, 22±4 years; BMI, 21±2 kg/m2; VO
Asunto(s)
Endotelio Vascular/fisiología , Ejercicio Físico/fisiología , Acondicionamiento Físico Humano/fisiología , Fútbol/fisiología , Vasodilatación/fisiología , Adulto , Velocidad del Flujo Sanguíneo , Arteria Braquial/diagnóstico por imagen , Arteria Braquial/fisiología , Prueba de Esfuerzo , Femenino , Humanos , Flujo Sanguíneo Regional/fisiología , Adulto JovenRESUMEN
Paracoccidioidomycosis (PCM) is a granulomatous fungal disease caused by the dimorphic fungal species of Paracoccidioides, which mainly affects the lungs. Modern strategies for the treatment and/or prevention of PCM are based on a Th1-type immune response, which is important for controlling the disease. One of the most studied candidates for a vaccine is the P10 peptide, derived from the 43 kDa glycoprotein of Paracoccidioides brasiliensis. In order to improve its immune modulatory effect, the P10 peptide was associated with a chitosan-conjugated nanoparticle. The nanoparticles presented 220 nm medium size, poly dispersion index (PDI) below 0.5, zeta potential of +20 mV and encapsulation efficiency around 90%. The nanoparticles' non-toxicity was verified by hemolytic test and cell viability using murine macrophages. The nanoparticles were stable and presented physicochemical characteristics desirable for biological applications, reducing the fungal load and the usual standard concentration of the peptide from 4 to 20 times.
RESUMEN
Wound healing in diabetic patients remains a worldwide problem that can cause amputations and even lead to death. This work aimed to produce lecithin-chitosan nanoparticles loaded with melatonin (MEL-NP) incorporated in a topical formulation to be evaluated for healing in the in vivo animal model for diabetes. To produce nanoparticles, an ethanolic solution containing soybean lecithin and melatonin was added dropwise to an aqueous solution of chitosan under sonication. The nanoparticles were physicochemical characterized and evaluated in vivo for toxicity using the Galleria mellonella model and its potential for wound healing in diabetic rats. The MEL-NPs presented a particle size of 160 nm and a zeta potential of 25 mV. The melatonin entrapment efficiency was 27%. Our results indicated that treatment with MEL-NP improved wound healing demonstrated by wound closure earlier than the other treatments evaluated. A desired therapeutic effect was achieved by MEL-NP in the induction of fibroblast and angiogenic proliferation. In addition, it was accompanied by an expressive collagen deposition. Considering the observed data, the MEL-NP developed could be used as a proof of concept to develop a promising strategy for the healing of diabetic wound.
Asunto(s)
Quitosano/química , Portadores de Fármacos/química , Lecitinas/química , Melatonina/administración & dosificación , Nanopartículas/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Biopsia , Diabetes Mellitus Experimental , Liberación de Fármacos , Fibroblastos , Melatonina/farmacología , Tamaño de la Partícula , Ratas , Úlcera Cutánea/tratamiento farmacológico , Úlcera Cutánea/etiología , Úlcera Cutánea/metabolismo , Úlcera Cutánea/patologíaRESUMEN
Vulvovaginal candidiasis is a serious health problem affecting numerous women around the world. Its treatment is based on antifungals which may not provide an effective cure because of the resistance presented by its etiological pathogens Candida spp. Candida albicans is the most prevalent species related to vulvovaginal candidiasis. Here, we evaluated the in vivo antifungal potential of thiosemicarbazide and thiosemicarbazide encapsulated within chitosan nanoparticles in a murine model of vulvovaginal candidiasis. The results demonstrated the antifungal capacity of free or nanoencapsulated thiosemicarbazide within chitosan to reduce the fungal load in the vaginal tissue of infected mice. In addition, histological analyses indicated the absence or a mild to moderate infection in thiosemicarbazide-treated groups. Statistical tests confirmed the existence of significant differences between the treated and the control groups. Therefore, our results suggest a potential application of thiosemicarbazide and encapsulated thiosemicarbazide as an alternative vulvovaginal candidiasis therapy.
Asunto(s)
Antifúngicos , Candidiasis Vulvovaginal/tratamiento farmacológico , Semicarbacidas , Animales , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Quitosano , Evaluación Preclínica de Medicamentos , Femenino , Ratones , Ratones Endogámicos BALB C , Nanopartículas , Semicarbacidas/administración & dosificación , Semicarbacidas/farmacología , Vagina/microbiologíaRESUMEN
Renewable energy can assist the management of the effects of population growth and rapid economic development on the sustainability of animal husbandry. The primary aim of renewable energy is to minimize the use of fossil fuels via the creation of environmentally friendly energy products from depleted fossil fuels. Digesters that treat swine manure are extensively used in treatment systems; and inclusion of swine carcasses can increase the organic loading rate (OLR) thereby improving biogas yield and productivity on farms. However, the characteristics of the components including animal residues, proteins, lipids, remains of undigested feed items, antimicrobial drug residues, pathogenic microorganisms and nutrient contents, are complex and diverse. It is therefore necessary to manage the anaerobic process stability and digestate purification for subsequent use as fertilizer. Efficient methane recovery from residues rich in lipids is difficult because such residues are only slowly biodegradable. Pretreatment can promote solubilization of lipids and accelerate anaerobic digestion, and pretreatments can process the swine carcass before its introduction onto biodigesters. This review presents an overview of the anaerobic digestion of swine manure and carcasses. We analyze the characteristics of these residues, and we identify strategies to enhance biogas yield and process stability. We consider energy potential, co-digestion of swine manure and carcasses, physical, chemical, and biological pretreatment of biomass, sanitary aspects of swine manure and co-digestates and their recycling as fertilizers.
RESUMEN
The aim of this work was to prepare chitosan nanoparticles containing insulin and to evaluate its therapeutic activity during wound healing in diabetic rats. The hypothesis that guided this study was that the combination of insulin within chitosan nanoparticles could stimulate the signaling pathway for wound healing. The chitosan nanoparticles were prepared by the ionotropic gelation method presenting average size of 183.3 ± 8.32 nm, polydispersity index (PDI) 0.397 ± 0.07 and zeta potential of 33.7 ± 2.45 mV for empty chitosan nanoparticles (EC) and 245.9 ± 25.46 nm and PDI 0.463 ± 0.01, and zeta potential of 39.3 ± 4.88 mV for chitosan nanoparticles containing insulin (IC). The insulin association efficiency was 97.19% ± 2.18. These nanoparticles and free insulin (FI) were incorporated within a hydrogel (Sepigel®) for topical application in the wound of 72 diabetic rats distributed in four groups: Sepigel® (S, control), free insulin (FI), empty chitosan nanoparticles (EC), and chitosan nanoparticles containing insulin (IC). The animals in each group were reorganized into three subgroups (n = 6) to assess their clinical signs after days 3, 7, and 14 from the beginning of treatments. Intense fibroplasias were observed in the free or insulin-chitosan nanoparticles groups. In the latter, a large number of blood vessels were observed at day 7th. Our data indicated that both empty and insulin-containing chitosan nanoparticles were able to stimulate inflammatory cell proliferation, and angiogenesis, followed by wound maturation.