RESUMEN
Despite major global efforts to eliminate tuberculosis, which is caused by Mycobacterium tuberculosis (Mtb), this disease remains as a major plague of humanity. Several factors associated with the host and Mtb interaction favor the infection establishment and/or determine disease progression. The Early Secreted Antigenic Target 6 kDa (ESAT-6) is one of the most important and well-studied mycobacterial virulence factors. This molecule has been described to play an important role in the development of tuberculosis-associated pathology by subverting crucial components of the host immune responses. This review highlights the main effector mechanisms by which ESAT-6 modulates the immune system, directly impacting cell fate and disease progression.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antígenos Bacterianos , Proteínas Bacterianas , Progresión de la EnfermedadRESUMEN
Tuberculosis (TB) is a lethal disease and remains one of the top ten causes of mortality by an infectious disease worldwide. It can also result in significant morbidity related to persistent inflammation and tissue damage. Pulmonary TB treatment depends on the prolonged use of multiple drugs ranging from 6 months for drug-susceptible TB to 6-20 months in cases of multi-drug resistant disease, with limited patient tolerance resulting from side effects. Treatment success rates remain low and thus represent a barrier to TB control. Adjunct host-directed therapy (HDT) is an emerging strategy in TB treatment that aims to target the host immune response to Mycobacterium tuberculosis in addition to antimycobacterial drugs. Combined multi-drug treatment with HDT could potentially result in more effective therapies by shortening treatment duration, improving cure success rates and reducing residual tissue damage. This review explores the rationale and challenges to the development and implementation of HDTs through a succinct report of the medications that have completed or are currently being evaluated in ongoing clinical trials.
RESUMEN
Irg1 is an enzyme that generates itaconate, a metabolite that plays a key role in the regulation of inflammatory responses. Previous studies have implicated Irg1 as an important mediator in preventing excessive inflammation and tissue damage in Mycobacterium tuberculosis (Mtb) infection. Here, we investigated the pattern recognition receptors and signaling pathways by which Mtb triggers Irg1 gene expression by comparing the responses of control and genetically deficient BMDMs. Using this approach, we demonstrated partial roles for TLR-2 (but not TLR-4 or -9), MyD88 and NFκB signaling in Irg1 induction by Mtb bacilli. In addition, drug inhibition studies revealed major requirements for phagocytosis and endosomal acidification in Irg1 expression triggered by Mtb but not LPS or PAM3CSK4. Importantly, the Mtb-induced Irg1 response was highly dependent on the presence of the bacterial ESX-1 secretion system, as well as host STING and Type I IFN receptor (IFNAR) signaling with Type II IFN (IFN-γ) signaling playing only a minimal role. Based on these findings we hypothesize that Mtb induces Irg1 expression in macrophages via the combination of two independent triggers both dependent on bacterial phagocytosis: 1) a major signal stimulated by phagocytized Mtb products released by an ESX-1-dependent mechanism into the cytosol where they activate the STING pathway leading to Type I-IFN production, and 2) a secondary TLR-2, MyD88 and NFκB dependent signal that enhances Irg1 production independently of Type I IFN induction.
Asunto(s)
Hidroliasas , Macrófagos , Proteínas de la Membrana , Mycobacterium tuberculosis , Receptor de Interferón alfa y beta , Receptor Toll-Like 2 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Inducción Enzimática , Hidroliasas/biosíntesis , Hidroliasas/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Ratones , Mycobacterium tuberculosis/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Fagocitosis , Receptor de Interferón alfa y beta/metabolismo , Receptor Toll-Like 2/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiologíaRESUMEN
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) remains a major public health problem worldwide due in part to the lack of an effective vaccine and to the lengthy course of antibiotic treatment required for successful cure. Combined immuno/chemotherapeutic intervention represents a major strategy for developing more effective therapies against this important pathogen. Because of the major role of CD4+ T cells in containing Mtb infection, augmentation of bacterial specific CD4+ T cell responses has been considered as an approach in achieving this aim. Here we present new data from our own research aimed at determining whether boosting CD4+ T cell responses can promote antibiotic clearance. In these studies, we first characterized the impact of antibiotic treatment of infected mice on Th1 responses to major Mtb antigens and then performed experiments aimed at sustaining CD4+ T cell responsiveness during antibiotic treatment. These included IL-12 infusion, immunization with ESAT-6 and Ag85B immunodominant peptides and adoptive transfer of Th1-polarized CD4+ T cells specific for ESAT-6 or Ag85B during the initial month of chemotherapy. These approaches failed to enhance antibiotic clearance of Mtb, indicating that boosting Th1 responses to immunogenic Mtb antigens highly expressed by actively dividing bacteria is not an effective strategy to be used in the initial phase of antibiotic treatment, perhaps because replicating organisms are the first to be eliminated by the drugs. These results are discussed in the context of previously published findings addressing this concept along with possible alternate approaches for harnessing Th1 immunity as an adjunct to chemotherapy.
Asunto(s)
Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Animales , Antibacterianos/uso terapéutico , Antígenos Bacterianos , Proteínas Bacterianas , Linfocitos T CD4-Positivos , Ratones , Tuberculosis/tratamiento farmacológicoRESUMEN
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme molecules releasing equimolar amounts of biliverdin, iron and carbon monoxide. Its expression is induced in response to stress signals such as reactive oxygen species and inflammatory mediators with antioxidant, anti-inflammatory and immunosuppressive consequences for the host. Interestingly, several intracellular pathogens responsible for major human diseases have been shown to be powerful inducers of HO-1 expression in both host cells and in vivo. Studies have shown that this HO-1 response can be either host detrimental by impairing pathogen control or host beneficial by limiting infection induced inflammation and tissue pathology. These properties make HO-1 an attractive target for host-directed therapy (HDT) of the diseases in question, many of which have been difficult to control using conventional antibiotic approaches. Here we review the mechanisms by which HO-1 expression is induced and how the enzyme regulates inflammatory and immune responses during infection with a number of different intracellular bacterial and protozoan pathogens highlighting mechanistic commonalities and differences with the goal of identifying targets for disease intervention.
RESUMEN
The interplay between M. tuberculosis (Mtb) and humans is multifactorial. The susceptibility/resistance profile and the establishment of clinical tuberculosis (TB) still remains elusive. The gain-of-function variant rs10754558 in the NLRP3 gene (found in 30% of the world population) confers protection against the development of TB, indicating a prominent role played by NLRP3 inflammasome against Mtb. Through genotype-guided assays and various Mtb strains (BCG, H37Rv, Beijing-1471, MP287/03), we demonstrate that Mtb strains activate inflammasome according to the NLRP3/IL-1ß or NLRC4/IL18 preferential axis. NLRP3 and NLRC4 genetic variants contribute to the presentation of TB. For the first time, we have shown that loss-of-function variants in NLRC4 significantly contribute to the development of extra-pulmonary TB. The analysis of inflammasome activation in a cohort of TB patients and their "household contacts" (CNT) revealed that plasma IL-1ß/IFN-α ratio lets us distinguish patients from Mtb-exposed-but-healthy individuals from an endemic region. Moreover, NLRP3 inflammasome seemed "exhausted" in TB patients compared to CNT, indicating a more efficient activation of inflammasome in resistant individuals. These findings suggest that inflammasome genetics as well as virulence-dependent level of inflammasome activation contribute to the onset of a susceptible/resistant profile among Mtb-exposed individuals.
Asunto(s)
Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inflamasomas/metabolismo , Mycobacterium tuberculosis/fisiología , Tuberculosis/etiología , Tuberculosis/metabolismo , Adulto , Alelos , Biomarcadores , Brasil/epidemiología , Estudios de Cohortes , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Evaluación del Resultado de la Atención al Paciente , Polimorfismo de Nucleótido Simple , Vigilancia de la Población , Tuberculosis/epidemiología , Tuberculosis/prevención & control , VirulenciaRESUMEN
Despite the availability of effective antimicrobials, tuberculosis (TB) is still a serious health threat. Mortality is even higher in people living with HIV who are diagnosed with TB. New therapies are needed to shorten the time required to cure TB and decrease fatality rates in this population. N-acetylcysteine (NAC) is a glutathione precursor and has shown recently in experimental setting to present in vitro and in vivo anti-mycobacterial activity. We test the hypothesis that NAC is safe, well tolerated and secondarily efficacious as adjunctive anti-TB therapy in hospitalized individuals with HIV-associated TB. Patients were enrolled sequentially in a tertiary care center, in the Brazilian Amazon. We performed a randomized, parallel group, single-center, open study trial of two arms, in hospitalized patients over 18 years of age, with microbiologically confirmed pulmonary TB in HIV: one with rifampicin, isoniazid, pyrazinamide and ethambutol at standard doses (Control Group), and a second in which NAC 600 mg bid for eight weeks was added (NAC Group). A total of 21 and 18 patients were enrolled to the Control Group and NAC Group, respectively. Adverse event rates were similar in the two arms. Our findings suggest that in the more critical population of hospitalized patients with HIV-associated TB, the use of NAC was not unsafe, despite the low sample size, and a potential impact on faster negative cultures needs to be further explored in larger studies.
Asunto(s)
Acetilcisteína/efectos adversos , Acetilcisteína/uso terapéutico , Infecciones por VIH/complicaciones , Hospitalización , Seguridad , Tuberculosis/complicaciones , Tuberculosis/tratamiento farmacológico , Adulto , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
Tuberculosis (TB) still causes significant morbidity and mortality worldwide, especially in persons living with human immunodeficiency virus (HIV). This disease is hallmarked by persistent oxidative stress and systemic inflammation. N-acetylcysteine (NAC), a glutathione (GSH) precursor, has been shown in experimental models to limit Mycobacterium tuberculosis infection and disease both by suppression of the host oxidative response and through direct antimicrobial activity. In a recent phase II randomized clinical trial (RIPENACTB study), use of NAC as adjunct therapy during the first two months of anti-TB treatment was safe. Whether adjunct NAC therapy of patients with TB-HIV coinfection in the context of anti-TB treatment could directly affect pro-oxidation and systemic inflammation has not been yet formally demonstrated. To test this hypothesis, we leveraged existing data and biospecimens from the RIPENACTB trial to measure a number of surrogate markers of oxidative stress and of immune activation in peripheral blood of the participants at pre-treatment and at the day 60 of anti-TB treatment. Upon initiation of therapy, we found that the group of patients undertaking NAC exhibited significant increase in GSH levels and in total antioxidant status while displaying substantial reduction in lipid peroxidation compared to the control group. Only small changes in plasma concentrations of cytokines were noted. Pharmacological improvement of the host antioxidant status appears to be a reasonable strategy to reduce TB-associated immunopathology.
Asunto(s)
Acetilcisteína/administración & dosificación , Infecciones por VIH , VIH-1 , Hospitalización , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Tuberculosis , Adulto , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Tuberculosis/sangre , Tuberculosis/tratamiento farmacológico , Tuberculosis/etiologíaRESUMEN
BACKGROUND: Tuberculous pneumonia, necrotic granulomatous lesions, and bacterial dissemination characterize severe forms of mycobacterial infection. METHODS: To evaluate the pulmonary CD4+ T-cell response during severe tuberculosis, C57BL/6 mice were infected with approximately 100 bacilli of 3 hypervirulent mycobacterial isolates (Mycobacterium tuberculosis strain Beijing 1471 and Mycobacterium bovis strains B2 and MP287/03) or the H37Rv M tuberculosis strain as reference for mycobacterial virulence. Because high expression of both CD39 and CD73 ectonucleotidases was detected on parenchymal CD4+ T cells, we investigated whether CD4+ T-cell suppression in the context of severe disease was due to the extracellular adenosine accumulation that resulted from tissue damage. RESULTS: Lowest expression of CD69, which is an activation marker implicated in maintaining cells in tissues, was observed in lungs from mice displaying the most severe pulmonary pathology. Reduced interferon (IFN)γ-producing CD4+ T cells were also found in the lung of these mice. Intranasal administration of the adenosine receptor antagonist caffeine substantially enhanced the frequency and number of parenchymal CD4+ T cells as well as both CD69 expression and IFNγ production. CONCLUSIONS: These results indicate that adenosine, which may be generated by extracellular adenosine triphosphate degradation, impairs the parenchymal CD4+ T-cell response and contributes to the development of severe tuberculosis.
Asunto(s)
Linfocitos T CD4-Positivos/patología , Pulmón/patología , Tuberculosis Pulmonar/patología , 5'-Nucleotidasa/metabolismo , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Cafeína/farmacología , Interferón gamma/metabolismo , Lectinas Tipo C/metabolismo , Pulmón/microbiología , Ratones Endogámicos C57BL , Mycobacterium bovis/patogenicidad , Mycobacterium tuberculosis/patogenicidad , Antagonistas de Receptores Purinérgicos P1/farmacología , Receptores Purinérgicos P1/metabolismo , Transducción de Señal , Tuberculosis Pulmonar/microbiologíaRESUMEN
In order to develop an improved BCG vaccine against tuberculosis we have taken advantage of the adjuvant properties of a non-toxic derivative of Escherichia coli heat labile enterotoxin (LT), LTAK63. We have constructed rBCG strains expressing LTAK63 at different expression levels. Mice immunized with BCG expressing low levels of LTAK63 (rBCG-LTAK63lo) showed higher Th1 cytokines and IL-17 in the lungs, and when challenged intratracheally with Mycobacterium tuberculosis displayed a 2.0-3.0 log reduction in CFU as compared to wild type BCG. Histopathological analysis of lung tissues from protected mice revealed a reduced inflammatory response. Immunization with rBCG-LTAK63lo also protected against a 100-fold higher challenge dose. Mice immunized with rBCG-LTAK63lo produced an increase in TGF-ß as compared with BCG after challenge, with a corresponding reduction in Th1 and Th17 cytokines, as determined by Real Time RT-PCR. Furthermore, rBCG-LTAK63lo also displays protection against challenge with a highly virulent Beijing isolate. Our findings suggest that BCG with low-level expression of the LTAK63 adjuvant induces a stronger immune response in the lungs conferring higher levels of protection, and a novel mechanism subsequently triggers a regulatory immune response, which then limits the pathology. The rBCG-LTAK63lo strain can be the basis of an improved vaccine against tuberculosis.
Asunto(s)
Vacuna BCG/inmunología , Endotoxinas/inmunología , Tuberculosis/inmunología , Vacunas Sintéticas/inmunología , Adyuvantes Inmunológicos/genética , Animales , Vacuna BCG/genética , Células Cultivadas , Endotoxinas/genética , Pulmón/inmunología , Ratones , Mycobacterium tuberculosis/inmunología , Bazo/inmunología , Vacunas Sintéticas/genéticaRESUMEN
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb) that in most cases induces irreversible necrosis of lung tissue as a result of excessive inflammatory reactions. The murine model of TB in resistant C57BL/6 mice infected with reference Mtb strains is widely used in TB studies; however, these mice do not show a necrotic pathology, which restricts their use in studies of irreversible tissue damage. Recently, we demonstrated that necrotic lung lesions could be induced in the C57BL/6 mice by highly virulent Mtb strains belonging to the modern Beijing sublineage. However, the pathogenic mechanisms leading to necrosis in this model were not elucidated. In this study, we investigated the dynamics of lung lesions in mice infected with highly virulent Beijing Mtb strain M299, compared with those infected with laboratory Mtb strain H37Rv. The data demonstrate that necrotic lung lesions in mice infected by the strain M299 were associated with enhanced recruitment of myeloid cells, especially neutrophils, and increased levels of proinflammatory cytokines, consistent with exacerbated inflammation. High levels of IFN-γ production contributed to the control of bacterial growth. Further progression to chronic disease was associated with a reduction in the levels of inflammatory mediators in the lungs, the accumulation of foamy macrophages and partial healing of the necrotic tissue by fibrosis. At a late stage of disease, degradation of foamy cells resulted in the liberation of accumulated lipids and persisting bacilli and further activation of inflammation, which promoted lung consolidation. Overall, our studies show that C57BL/6 mice infected with highly virulent Mtb strain may serve as a TB model reproducing an exacerbated inflammatory response in a resistant host to hypervirulent mycobacteria, leading to irreversible necrotic lung lesions.
Asunto(s)
Mycobacterium tuberculosis/patogenicidad , Neutrófilos/inmunología , Tuberculosis Pulmonar/microbiología , Animales , Citocinas/biosíntesis , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/patología , VirulenciaRESUMEN
In order to develop an improved BCG vaccine against tuberculosis we have taken advantage of the adjuvant properties of a non-toxic derivative of Escherichia coli heat labile enterotoxin (LT), LTAK63. We have constructed rBCG strains expressing LTAK63 at different expression levels. Mice immunized with BCG expressing low levels of LTAK63 (rBCG-LTAK63lo) showed higher Th1 cytokines and IL-17 in the lungs, and when challenged intratracheally with Mycobacterium tuberculosis displayed a 2.03.0 log reduction in CFU as compared to wild type BCG. Histopathological analysis of lung tissues from protected mice revealed a reduced inflammatory response. Immunization with rBCG-LTAK63lo also protected against a 100-fold higher challenge dose. Mice immunized with rBCG-LTAK63lo produced an increase in TGF-β as compared with BCG after challenge, with a corresponding reduction in Th1 and Th17 cytokines, as determined by Real Time RT-PCR. Furthermore, rBCG-LTAK63lo also displays protection against challenge with a highly virulent Beijing isolate. Our findings suggest that BCG with low-level expression of the LTAK63 adjuvant induces a stronger immune response in the lungs conferring higher levels of protection, and a novel mechanism subsequently triggers a regulatory immune response, which then limits the pathology. The rBCG-LTAK63lo strain can be the basis of an improved vaccine against tuberculosis.
Asunto(s)
Vacuna BCG , Vacunas contra la TuberculosisRESUMEN
Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMPs). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels were previously shown to distinguish active from latent TB, as well as successfully treated Mycobacterium tuberculosis infection. MMP-1 expression is also associated with active TB. In this study, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations, as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other nontuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied the expression of HO-1 and MMP-1 in M. tuberculosis-infected human and murine macrophages. We found that infection of macrophages with live virulent M. tuberculosis is required for robust induction of high levels of HO-1 but not MMP-1. In addition, we observed that CO, a product of M. tuberculosis-induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients.
Asunto(s)
Hemo-Oxigenasa 1/sangre , Metaloproteinasa 1 de la Matriz/sangre , Estrés Oxidativo/fisiología , Tuberculosis Pulmonar/patología , Adulto , Anciano , Biomarcadores/sangre , Brasil , Femenino , Hemo-Oxigenasa 1/metabolismo , Humanos , India , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de Unión a TGF-beta Latente/sangre , Pulmón/microbiología , Pulmón/patología , Macrófagos/microbiología , Macrófagos/patología , Masculino , Metaloproteinasa 1 de la Matriz/biosíntesis , Persona de Mediana Edad , Mycobacterium tuberculosis/inmunología , Factor de Transcripción AP-1/metabolismo , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Estados Unidos , Adulto JovenRESUMEN
The extract of the fruits from Schinus terebinthifolius Raddi, Anacardiaceae, was obtained by exhaustive extraction with methanol. Its fractions and isolated compounds were collected by fractionation with RP-2 column chromatography. The crude extract, the flavonoid fraction and the isolated compound identified as apigenin (1), were investigated regarding its inhibitory action of nitric oxide production by LPS-stimulated macrophages, antioxidant activity by DPPH and the antimycobacterial activity against Mycobacterium bovis BCG. The samples exhibited a significant inhibitory effect on the nitric oxide production (e.g., 1, IC50 19.23 ± 1.64 µg/ml) and also showed antioxidant activity. In addition, S. terebinthifolius samples inhibited the mycobacterial growth ( e.g., 1, IC50 14.53 ± 1.25 µg/ml). The necessary concentration to produce 50% of the maximum response (IC50) of these activities did not elicit a significant cytotoxic effect when compared with the positive control (100% of lysis). The antioxidant and nitric oxide inhibition activity displayed by S. terebinthifolius corroborates its ethnopharmacological use of this specie as an anti-inflammatory. In addition, our results suggest that the flavonoids of S. terebinthifolius are responsible for the activities found. We, describe for the first time the activity against Mycobacterium bovis BCG and the inhibition of nitric oxide production for S. terebinthifolius.
RESUMEN
The purinergic P2X7 receptor (P2X7R) is a sensor of extracellular ATP, a damage-associated molecule that is released from necrotic cells and that induces pro-inflammatory cytokine production and cell death. To investigate whether the innate immune response to damage signals could contribute to the development of pulmonary necrotic lesions in severe forms of tuberculosis, disease progression was examined in C57BL/6 and P2X7R-/- mice that were intratracheally infected with highly virulent mycobacterial strains (Mycobacterium tuberculosis strain 1471 of the Beijing genotype family and Mycobacterium bovis strain MP287/03). The low-dose infection of C57BL/6 mice with bacteria of these strains caused the rapid development of extensive granulomatous pneumonia with necrotic areas, intense bacillus dissemination and anticipated animal death. In contrast, in P2X7R-/- mice, the lung pathology presented with moderate infiltrates of mononuclear leukocytes without visible signs of necrosis; the disease attenuation was accompanied by a delay in mortality. In vitro, the hypervirulent mycobacteria grew rapidly inside macrophages and induced death by a P2X7R-dependent mechanism that facilitated the release of bacilli. Furthermore, these bacteria were resistant to the protective mechanisms elicited in macrophages following extracellular ATP stimulation. Based on this study, we propose that the rapid intracellular growth of hypervirulent mycobacteria results in massive macrophage damage. The ATP released by damaged cells engages P2X7R and accelerates the necrotic death of infected macrophages and the release of bacilli. This vicious cycle exacerbates pneumonia and lung necrosis by promoting widespread cell destruction and bacillus dissemination. These findings suggest the use of drugs that have been designed to inhibit the P2X7R as a new therapeutic approach to treat the aggressive forms of tuberculosis.
Asunto(s)
Macrófagos , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Receptores Purinérgicos P2X7 , Tuberculosis Pulmonar , Adenosina Trifosfato/inmunología , Animales , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Mycobacterium bovis/inmunología , Mycobacterium bovis/patogenicidad , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/inmunología , Tuberculosis Pulmonar/genética , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patologíaRESUMEN
Strains of the Beijing genotype family of Mycobacterium tuberculosis are a cause of particular concern because of their increasing dissemination in the world and their association with drug resistance. Phylogenetically, this family includes distinct ancient and modern sublineages. The modern strains, contrary to the ancestral counterparts, demonstrated increasing prevalence in many world regions that suggest an enhanced bacterial pathogenicity. We therefore evaluated virulence of modern versus ancient Beijing strains with similar epidemiological and genotype characteristics. For this, we selected six strains that had very similar 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing profiles and belonged to the region of difference 181 (RD181) subgroup but differed using markers (mutT2 and mutT4 genes and NTF locus) that discriminate between modern and ancient Beijing sublineages. The strains were isolated from native patients in Brazil and Mozambique, countries with a low prevalence of Beijing strains. The virulence levels of these strains were determined in models of pulmonary infection in mice and in vitro macrophage infection and compared with that of a strain from Russia, part of the epidemic and hypervirulent Beijing clone B0/W148, and of the laboratory strain H37Rv. The results showed that two of the three modern Beijing strains were highly pathogenic, exhibiting levels of virulence comparable with that of the epidemic Russian strain. In contrast, all isolates of the ancient sublineage displayed intermediate or low virulence. The data obtained demonstrate that the strains of the modern Beijing sublineage are more likely to exhibit highly virulent phenotypes than ancient strains and suggest that genetic alterations characteristic of the modern Beijing sublineage favor selection of highly virulent bacteria.
Asunto(s)
Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/patología , Animales , Brasil , Células Cultivadas , Modelos Animales de Enfermedad , Genotipo , Humanos , Macrófagos/microbiología , Ratones Endogámicos C57BL , Tipificación Molecular , Mozambique , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/aislamiento & purificación , Federación de Rusia , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patologíaRESUMEN
NAIP5/NLRC4 (neuronal apoptosis inhibitory protein 5/nucleotide oligomerization domain-like receptor family, caspase activation recruitment domain domain-containing 4) inflammasome activation by cytosolic flagellin results in caspase-1-mediated processing and secretion of IL-1ß/IL-18 and pyroptosis, an inflammatory cell death pathway. Here, we found that although NLRC4, ASC, and caspase-1 are required for IL-1ß secretion in response to cytosolic flagellin, cell death, nevertheless, occurs in the absence of these molecules. Cytosolic flagellin-induced inflammasome-independent cell death is accompanied by IL-1α secretion and is temporally correlated with the restriction of Salmonella Typhimurium infection. Despite displaying some apoptotic features, this peculiar form of cell death do not require caspase activation but is regulated by a lysosomal pathway, in which cathepsin B and cathepsin D play redundant roles. Moreover, cathepsin B contributes to NAIP5/NLRC4 inflammasome-induced pyroptosis and IL-1α and IL-1ß production in response to cytosolic flagellin. Together, our data describe a pathway induced by cytosolic flagellin that induces a peculiar form of cell death and regulates inflammasome-mediated effector mechanisms of macrophages.
Asunto(s)
Citosol/metabolismo , Flagelina/metabolismo , Inflamasomas/metabolismo , Lisosomas/metabolismo , Macrófagos/inmunología , Animales , Apoptosis , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/patogenicidad , Receptor Toll-Like 5/genéticaRESUMEN
Prostate cancer (PCa) is one of the most common malignancies found in males. The development of PCa involves several mutations in prostate epithelial cells, usually linked to developmental changes, such as enhanced resistance to apoptotic death, constitutive proliferation, and, in some cases, to differentiation into an androgen deprivation-resistant phenotype, leading to the appearance of castration-resistant PCa (CRPCa), which leads to a poor prognosis in patients. In this review, we summarize recent findings concerning the main deregulations into signaling pathways that will lead to the development of PCa and/or CRPCa. Key mutations in some pathway molecules are often linked to a higher prevalence of PCa, by directly affecting the respective cascade and, in some cases, by deregulating a cross-talk node or junction along the pathways. We also discuss the possible environmental and nonenvironmental inducers for these mutations, as well as the potential therapeutic strategies targeting these signaling pathways. A better understanding of how some risk factors induce deregulation of these signaling pathways, as well as how these deregulated pathways affect the development of PCa and CRPCa, will further help in the development of new treatments and prevention strategies for this disease.
RESUMEN
BACKGROUND: Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. RESULTS: Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-γ, inducing proinflammatory type-1 macrophages (M1), or IL-10, inducing anti-inflammatory type-2 cells (M2). Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR) and arginase-1 (Arg-1). Treatment of macrophages with IFN-γ and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS) expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate arginine, leading to lower levels of NO production. CONCLUSIONS: The data obtained demonstrated that the strain, characterized by increased growth in macrophages, down- modulated classical macrophage activation, through induction of an atypical mixed M1/M2 phenotype.