Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400256, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708816

RESUMEN

Nickel (Ni)-rich cathodes are among the most promising cathode materials of lithium batteries, ascribed to their high-power density, cost-effectiveness, and eco-friendliness, having extensive applications from portable electronics to electric vehicles and national grids. They can boost the wide implementation of renewable energies and thereby contribute to carbon neutrality and achieving sustainable prosperity in the modern society. Nevertheless, these cathodes suffer from significant technical challenges, leading to poor cycling performance and safety risks. The underlying mechanisms are residual lithium compounds, uncontrolled lithium/nickel cation mixing, severe interface reactions, irreversible phase transition, anisotropic internal stress, and microcracking. Notably, they have become more serious with increasing Ni content and have been impeding the widespread commercial applications of Ni-rich cathodes. Various strategies have been developed to tackle these issues, such as elemental doping, adding electrolyte additives, and surface coating. Surface coating has been a facile and effective route and has been investigated widely among them. Of numerous surface coating materials, have recently emerged as highly attractive options due to their high lithium-ion conductivity. In this review, a thorough and comprehensive review of lithium-ion conductive coatings (LCCs) are made, aimed at probing their underlying mechanisms for improved cell performance and stimulating new research efforts.

2.
Adv Sci (Weinh) ; : e2308580, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566441

RESUMEN

Aqueous rechargeable zinc-sulfur (Zn-S) batteries are a promising, cost-effective, and high-capacity energy storage technology. Still, they are challenged by the poor reversibility of S cathodes, sluggish redox kinetics, low S utilization, and unsatisfactory areal capacity. This work develops a facile strategy to achieve an appealing high-areal-capacity (above 5 mAh cm-2) Zn-S battery by molecular-level regulation between S and high-electrical-conductivity tellurium (Te). The incorporation of Te as a dopant allows for manipulation of the Zn-S electrochemistry, resulting in accelerated redox conversion, and enhanced S utilization. Meanwhile, accompanied by the S-ZnS conversion, Te is converted to zinc telluride during the discharge process, as revealed by ex-situ characterizations. This additional redox reaction contributes to the S cathode's total excellent discharge capacity. With this unique cathode structure design, the carbon-confined TeS cathode (denoted as Te1S7/C) delivers a high reversible capacity of 1335.0 mAh g-1 at 0.1 A g-1 with a mass loading of 4.22 mg cm-2, corresponding to a remarkable areal capacity of 5.64 mAh cm-2. Notably, a hybrid electrolyte design uplifts discharge plateau, reduces overpotential, suppresses Zn dendrites growth, and extends the calendar life of Zn-Te1S7 batteries. This study provides a rational S cathode structure to realize high-capacity Zn-S batteries for practical applications.

3.
Angew Chem Int Ed Engl ; 63(19): e202402206, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38457347

RESUMEN

Aqueous Zn-metal battery (AZMB) is a promising candidate for future large-scale energy storage with commendable capacity, exceptional safety characteristics, and low cost. Acetonitrile (AN) has been widely used as an effective electrolyte constituent to improve AZMBs' performance. However, its functioning mechanisms remain unclear. In this study, we unveiled the critical roles of AN in AZMBs via comparative in situ electrochemical, gaseous, and morphological analyses. Despite its limited ability to solvate Zn ions, AN-modulated Zn-ion solvation sheath with increased anions and decreased water achieves a weakly-solvating electrolyte. As a result, the Zn||Zn cell with AN addition exhibited 63 times longer cycle life than cell without AN and achieved a 4 Ah cm-2 accumulated capacity with no H2 generation. In V2O5||Zn cells, for the first time, AN suppressing CO2 generation, elevating CO2-initiation voltage from 2→2.44 V (H2: 2.43→2.55 V) was discovered. AN-impeded transit and Zn-side deposition of dissolved vanadium ions, known as "crosstalk," ameliorated inhomogeneous Zn deposition and dendritic Zn growth. At last, we demonstrated an AN-enabled high-areal-capacity AZMB (3.3 mAh cm-2) using high-mass-loading V2O5 cathode (26 mg cm-2). This study shed light on the strategy of constructing fast-desolvation electrolytes and offered insights for future electrolyte accommodation for high-voltage AZMB cathodes.

4.
Angew Chem Int Ed Engl ; 62(33): e202307475, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37318899

RESUMEN

The brain-storm of designing low-cost and commercialized eutectic electrolytes for zinc (Zn)-based electrochemical energy storage (ZEES) remains unresolved and attractive, especially when implementing it at low temperatures. Here, we report an appealing layout of advancing chlorine-functionalized eutectic (Cl-FE) electrolytes via exploiting Cl anion-induced eutectic interaction with Zn acetate solutions. This novel eutectic liquid shows high affinity to collaborate with 1,3-dioxolane (DOL) and is prone to constitute Cl-FE/DOL-based electrolytes with a unique inner/outer eutectic solvation sheath for the better regulation of Zn-solvating neighboring and reconstruction of H-bonding. The side reactions are effectively restricted on Zn anodes and a high Coulombic efficiency of 99.5 % can be achieved over 1000 cycles at -20 °C with Zn//Cu setups. By prototyping scale-up Zn-ion pouch cells using the optimal eutectic liquid of 3ZnOAc1.2 Cl1.8 -DOL, we obtain improved electrochemical properties at -20 °C with a high capacitance of 203.9 F g-1 at 0.02 A g-1 in a range of 0.20-1.90 V and long-term cycling ability with 95.3 % capacitance retention at 0.2 A g-1 over 3,000 cycles. Overall, the proposal of ideal Cl-FE/DOL-based electrolytes guides the design of sub-zero and endurable aqueous ZEES devices and beyond.

5.
ACS Appl Mater Interfaces ; 14(40): 45296-45307, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173298

RESUMEN

The attainment of "true reinforcement" in a composite and harnessing of the associated beneficial effects have been demonstrated here through the development of faceted crystalline Sb particles having the interiors reinforced with reduced graphene oxide (rGO). Such a unique and "near-ideal" micro/nanocomposite architecture has been achieved via a facile/cost-effective route by facilitating heterogeneous nucleation/growth of Sb-oxide particles on/around dispersed rGO sheets upon incorporation of the same directly into the precursor suspension, followed by the reduction of Sb-oxide to Sb, in intimate contact with the rGO, during the subsequent single heat-treatment step. As a potential anode material for Na-ion batteries, the as-developed Sb/rGO composite exhibits a reversible Na-storage capacity of ∼550 mAh/g (@ 0.2 A/g) and a fairly high first cycle Coulombic efficiency (CE) of ∼79%, with the good reversibility being attributed to the coarse particle size of Sb and encompassing of rGO sheets inside the Sb particles. Furthermore, despite the coarse particle size, the Sb/rGO-based electrode exhibits outstanding cyclic stability, with negligible capacity fade up to 150 cycles (viz., ∼97% capacity retention), and rate capability, with >86% capacity being obtained upon raising the current density from 0.1 to 2 A/g, resulting in a capacity of ∼490 mAh/g, even at 2 A/g.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...