Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Hum Genomics ; 18(1): 50, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778374

RESUMEN

Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.


Asunto(s)
Biomarcadores , Ataxia de Friedreich , MicroARNs , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Ataxia de Friedreich/sangre , MicroARNs/genética , MicroARNs/sangre , Masculino , Biomarcadores/sangre , Pronóstico , Femenino , Adulto , RNA-Seq , Adolescente , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Niño , Adulto Joven , Persona de Mediana Edad , Preescolar , Curva ROC , Estudios de Casos y Controles
2.
Cell ; 187(6): 1335-1342, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38490175

RESUMEN

Gender inequality in STEM fields remains pervasive and undermines the ability for talented individuals to excel. Despite advances, women still encounter obstacles in pursuing academic careers and reaching leadership positions. This commentary discusses the "scissor-shaped curve" and examines effective strategies to fix it, including data-driven initiatives that we have implemented at our university.


Asunto(s)
Academia , Equidad de Género , Humanos , Femenino , Liderazgo , Universidades
3.
Front Microbiol ; 14: 1155624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283924

RESUMEN

Introduction: Our research group and others demonstrated the implication of the human endogenous retroviruses (HERVs) in SARS-CoV-2 infection and their association with disease progression, suggesting HERVs as contributing factors in COVID-19 immunopathology. To identify early predictive biomarkers of the COVID-19 severity, we analyzed the expression of HERVs and inflammatory mediators in SARS-CoV-2-positive and -negative nasopharyngeal/oropharyngeal swabs with respect to biochemical parameters and clinical outcome. Methods: Residuals of swab samples (20 SARS-CoV-2-negative and 43 SARS-CoV-2-positive) were collected during the first wave of the pandemic and expression levels of HERVs and inflammatory mediators were analyzed by qRT-Real time PCR. Results: The results obtained show that infection with SARS-CoV-2 resulted in a general increase in the expression of HERVs and mediators of the immune response. In particular, SARS-CoV-2 infection is associated with increased expression of HERV-K and HERV-W, IL-1ß, IL-6, IL-17, TNF-α, MCP-1, INF-γ, TLR-3, and TLR-7, while lower levels of IL-10, IFN-α, IFN-ß, and TLR-4 were found in individuals who underwent hospitalization. Moreover, higher expression of HERV-W, IL-1ß, IL-6, IFN-α, and IFN-ß reflected the respiratory outcome of patients during hospitalization. Interestingly, a machine learning model was able to classify hospitalized vs not hospitalized patients with good accuracy based on the expression levels of HERV-K, HERV-W, IL-6, TNF-a, TLR-3, TLR-7, and the N gene of SARS-CoV-2. These latest biomarkers also correlated with parameters of coagulation and inflammation. Discussion: Overall, the present results suggest HERVs as contributing elements in COVID-19 and early genomic biomarkers to predict COVID-19 severity and disease outcome.

4.
Proc Natl Acad Sci U S A ; 120(19): e2220911120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126681

RESUMEN

Narcolepsy with cataplexy is a sleep disorder caused by deficiency in the hypothalamic neuropeptide hypocretin/orexin (HCRT), unanimously believed to result from autoimmune destruction of hypocretin-producing neurons. HCRT deficiency can also occur in secondary forms of narcolepsy and be only temporary, suggesting it can occur without irreversible neuronal loss. The recent discovery that narcolepsy patients also show loss of hypothalamic (corticotropin-releasing hormone) CRH-producing neurons suggests that other mechanisms than cell-specific autoimmune attack, are involved. Here, we identify the HCRT cell-colocalized neuropeptide QRFP as the best marker of HCRT neurons. We show that if HCRT neurons are ablated in mice, in addition to Hcrt, Qrfp transcript is also lost in the lateral hypothalamus, while in mice where only the Hcrt gene is inactivated Qrfp is unchanged. Similarly, postmortem hypothalamic tissues of narcolepsy patients show preserved QRFP expression, suggesting the neurons are present but fail to actively produce HCRT. We show that the promoter of the HCRT gene of patients exhibits hypermethylation at a methylation-sensitive and evolutionary-conserved PAX5:ETS1 transcription factor-binding site, suggesting the gene is subject to transcriptional silencing. We show also that in addition to HCRT, CRH and Dynorphin (PDYN) gene promoters, exhibit hypermethylation in the hypothalamus of patients. Altogether, we propose that HCRT, PDYN, and CRH are epigenetically silenced by a hypothalamic assault (inflammation) in narcolepsy patients, without concurrent cell death. Since methylation is reversible, our findings open the prospect of reversing or curing narcolepsy.


Asunto(s)
Cataplejía , Narcolepsia , Neuropéptidos , Ratones , Animales , Orexinas/metabolismo , Cataplejía/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuropéptidos/metabolismo , Narcolepsia/genética , Hipotálamo/metabolismo , Epigénesis Genética , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo
5.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36862511

RESUMEN

Circadian rhythmicity in renal function suggests rhythmic adaptations in renal metabolism. To decipher the role of the circadian clock in renal metabolism, we studied diurnal changes in renal metabolic pathways using integrated transcriptomic, proteomic, and metabolomic analysis performed on control mice and mice with an inducible deletion of the circadian clock regulator Bmal1 in the renal tubule (cKOt). With this unique resource, we demonstrated that approximately 30% of RNAs, approximately 20% of proteins, and approximately 20% of metabolites are rhythmic in the kidneys of control mice. Several key metabolic pathways, including NAD+ biosynthesis, fatty acid transport, carnitine shuttle, and ß-oxidation, displayed impairments in kidneys of cKOt mice, resulting in perturbed mitochondrial activity. Carnitine reabsorption from primary urine was one of the most affected processes with an approximately 50% reduction in plasma carnitine levels and a parallel systemic decrease in tissue carnitine content. This suggests that the circadian clock in the renal tubule controls both kidney and systemic physiology.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/genética , Multiómica , Proteómica , Ritmo Circadiano/fisiología , Riñón/metabolismo , Carnitina , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo
6.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674633

RESUMEN

Coronary heart disease (CHD), one of the leading causes of disability and death worldwide, is a multifactorial disease whose early diagnosis is demanding. Thus, biomarkers predicting the occurrence of this pathology are of great importance from a clinical and therapeutic standpoint. By means of a pilot study on peripheral blood cells (PBMCs) of subjects with no coronary lesions (CTR; n = 2) and patients with stable CAD (CAD; n = 2), we revealed 61 differentially methylated regions (DMRs) (18 promoter regions, 24 genes and 19 CpG islands) and 14.997 differentially methylated single CpG sites (DMCs) in CAD patients. MiRNA-seq results displayed a peculiar miRNAs profile in CAD patients with 18 upregulated and 32 downregulated miRNAs (FC ≥ ±1.5, p ≤ 0.05). An integrated analysis of genome-wide DNA methylation and miRNA-seq results indicated a significant downregulation of hsa-miR-200c-3p (FCCAD = −2.97, p ≤ 0.05) associated to the hypermethylation of two sites (genomic coordinates: chr12:7073122-7073122 and chr12:7072599-7072599) located intragenic to the miR-200c/141 genomic locus (encoding hsa-miR-200c-3p) (p-value = 0.009) in CAD patients. We extended the hsa-miR-200c-3p expression study in a larger cohort (CAD = 72, CTR = 24), confirming its reduced expression level in CAD patients (FCCAD = −2; p = 0.02). However, when we analyzed the methylation status of the two CpG sites in the same cohort, we failed to identify significant differences. A ROC curve analysis showed good performance of hsa-miR-200c-3p expression level (AUC = 0.65; p = 0.02) in distinguishing CAD from CTR. Moreover, we found a significant positive correlation between hsa-miR-200c-3p expression and creatinine clearance (R2 = 0.212, p < 0.005, Pearson r = 0.461) in CAD patients. Finally, a phenotypic correlation performed in the CAD group revealed lower hsa-miR-200c-3p expression levels in CAD patients affected by dyslipidemia (+DLP, n = 58) (p < 0.01). These results indicate hsa-miR-200c-3p as potential epi-biomarker for the diagnosis and clinical progression of CAD and highlight the importance of deeper studies on the expression of this miRNA to understand its functional role in coronary artery disease development.


Asunto(s)
Enfermedad de la Arteria Coronaria , Dislipidemias , MicroARNs , Humanos , Enfermedad de la Arteria Coronaria/genética , Regulación hacia Abajo/genética , Proyectos Piloto , Perfilación de la Expresión Génica/métodos , MicroARNs/metabolismo , Biomarcadores
7.
Mol Metab ; 68: 101669, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642092

RESUMEN

OBJECTIVE: Ectopic lipid accumulation is a hallmark of metabolic diseases, linking obesity to non-alcoholic fatty liver disease, insulin resistance and diabetes. The use of zebrafish as a model of obesity and diabetes is raising due to the conserved properties of fat metabolism between humans and zebrafish, the homologous genes regulating lipid uptake and transport, the implementation of the '3R's principle and their cost-effectiveness. To date, a method allowing the conservation of lipid droplets (LDs) and organs in zebrafish larvae to image ectopic lipids is not available. Our objectives were to develop a novel methodology to quantitatively evaluate organ-specific LDs, in skeletal muscle and liver, in response to a nutritional perturbation. METHODS: We developed a novel embedding and cryosectioning protocol allowing the conservation of LDs and organs in zebrafish larvae. To establish the quantitative measures, we used a three-arm parallel nutritional intervention design. Zebrafish larvae were fed a control diet containing 14% of nutritional fat or two high fat diets (HFDs) containing 25 and 36% of dietary fats. In muscle and liver, LDs were characterized using immunofluorescence confocal microscopy. In liver, intrahepatocellular lipids were discriminated from intrasinusoid lipids. To complete liver characteristics, fibrosis was identified with Masson's Trichrome staining. Finally, to confirm the conservation and effect of HFD, molecular players of fat metabolism were evaluated by RT-qPCR. RESULTS: The cryosections obtained after setting up the embedding and cryopreservation method were of high quality, preserving tissue morphology and allowing the visualization of ectopic lipids. Both HFDs were obesogenic, without modifying larvae survival or development. Neutral lipid content increased with time and augmented dietary fat. Intramuscular LD volume density increased and was explained by an increase in LDs size but not in numbers. Intrahepatocellular LD volume density increased and was explained by an increased number of LDs, not by their increased size. Sinusoid area and lipid content were both increased. Hepatic fibrosis appeared with both HFDs. We observed alterations in the expression of genes associated with LD coating proteins, LD dynamics, lipogenesis, lipolysis and fatty acid oxidation. CONCLUSIONS: In this study, we propose a reproducible and fast method to image zebrafish larvae without losing LD quality and organ morphology. We demonstrate the impact of HFD on LD characteristics in liver and skeletal muscle accompanied by alterations of key players of fat metabolism. Our observations confirm the evolutionarily conserved mechanisms in lipid metabolism and reveal organ specific adaptations. The methodological advancements proposed in this work open the doors to study organelle adaptations in obesity and diabetes related research such as lipotoxicity, organelle contacts and specific lipid depositions.


Asunto(s)
Diabetes Mellitus , Dieta Alta en Grasa , Animales , Humanos , Diabetes Mellitus/metabolismo , Grasas de la Dieta/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Pez Cebra
8.
J Cell Mol Med ; 26(19): 4940-4948, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36073344

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the novel coronavirus responsible for worldwide coronavirus disease (COVID-19). We previously observed that Angiotensin-converting enzyme 2 (ACE2) and Dipeptidyl peptidase-4 (DPP4) are significantly overexpressed in naso-oropharyngeal swabs (NPS) of COVID-19 patients, suggesting their putative functional role in the disease progression. ACE2 and DPP4 overexpression in COVID-19 patients may be associated to epigenetic mechanism, such as miRNA differential expression. We investigated if hsa-let7b-5p, reported to target both ACE2 and DPP4 transcripts, could be involved in the regulation of these genes. We verified that the inhibition and overexpression of hsa-let7b-5p matched to a modulation of both ACE2 and DPP4 levels. Then, we observed a statistically significant downregulation (FC = -1.5; p < 0.05) of hsa-let7b-5p in the same COVID-19 and control samples of our previous study. This is the first study that shows hsa-let7b-5p low expression in naso-oropharyngeal swabs of COVID-19 patients and demonstrates a functional role of this miR in regulating ACE2 and DPP4 levels. These data suggest the involvement of hsa-let7b-5p in the regulation of genes necessary for SARS-CoV-2 infections and its putative role as a therapeutic target for COVID-19.


Asunto(s)
COVID-19 , MicroARNs , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , SARS-CoV-2/genética
9.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452310

RESUMEN

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Asunto(s)
MicroARNs , Neuropéptidos , Animales , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , MicroARNs/genética , Neuropéptidos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Sueño/genética , Vigilia/genética , Pez Cebra/metabolismo
10.
Hum Mol Genet ; 31(12): 2010-2022, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35015850

RESUMEN

Frataxin (FXN) deficiency is responsible for Friedreich's ataxia (FRDA) in which, besides the characteristic features of spinocerebellar ataxia, two thirds of patients develop hypertrophic cardiomyopathy that often progresses to heart failure and premature death. Different mechanisms might underlie FRDA pathogenesis. Among them, the role of miRNAs deserves investigations. We carried out an miRNA PCR-array analysis of plasma samples of early-, intermediate- and late-onset FRDA groups, defining a set of 30 differentially expressed miRNAs. Hsa-miR223-3p is the only miRNA shared between the three patient groups and appears upregulated in all of them. The up-regulation of hsa-miR223-3p was further validated in all enrolled patients (n = 37, Fc = +2.3; P < 0.0001). Using a receiver operating characteristic curve analysis, we quantified the predictive value of circulating hsa-miR223-3p for FRDA, obtaining an area under the ROC curve value of 0.835 (P < 0.0001) for all patients. Interestingly, we found a significant positive correlation between hsa-miR223-3p expression and cardiac parameters in typical FRDA patients (onset < 25 years). Moreover, a significant negative correlation between hsa-miR223-3p expression and HAX-1 (HCLS1-associated protein X-1) at mRNA and protein level was observed in all FRDA patients. In silico analyses suggested HAX-1 as a target gene of hsa-miR223-3p. Accordingly, we report that HAX-1 is negatively regulated by hsa-miR223-3p in cardiomyocytes (AC16) and neurons (SH-SY5Y), which are critically affected cell types in FRDA. This study describes for the first time the association between hsa-miR223-3p and HAX-1 expression in FRDA, thus supporting a potential role of this microRNA as non-invasive epigenetic biomarker for FRDA.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Ataxia de Friedreich , MicroARNs , Neuroblastoma , Proteínas Adaptadoras Transductoras de Señales/genética , Ataxia de Friedreich/patología , Humanos , MicroARNs/sangre , Miocitos Cardíacos/metabolismo , Neuroblastoma/metabolismo , ARN Mensajero/genética
12.
Elife ; 102021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34713805

RESUMEN

Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (-150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (-5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo.


Before a drug can have its desired effect, it must reach its target tissue or organ, and enter its cells. This is not easy because cells are surrounded by the plasma membrane, a fat-based barrier that separates the cell from its external environment. The plasma membrane contains proteins that act as channels, shuttling specific molecules in and out of the cell, and it also holds charge, with its inside surface being more negatively charged than its outside surface. Cell-penetrating peptides are short sequences of amino acids (the building blocks that form proteins) that carry positive charges. These positive charges allow them to cross the membrane easily, but it is not well understood how. To find out how cell-penetrating peptides cross the membrane, Trofimenko et al. attached them to dyes of different sizes. This revealed that the cell-penetrating peptides enter the cell through temporary holes called water pores, which measure about two nanometres across. The water pores form when the membrane becomes 'megapolarized', this is, when the difference in charge between the inside and the outside of the membrane becomes greater than normal. This can happen when the negative charge on the inside surface or the positive charge on the outer surface of the membrane increase. Megapolarization depends on potassium channels, which transport positive potassium ions outside the cell, making the outside of the membrane positive. When cell-penetrating peptides arrive at the outer surface of the cell near potassium channels, they make it even more positive. This increases the charge difference between the inside and the outside of the cell, allowing water pores to form. Once the peptides pass through the pores, the charge difference between the inside and the outside of the cell membrane dissipates, and the pores collapse. Drug developers are experimenting with attaching cell-penetrating peptides to drugs to help them get inside their target cells. Currently there are several experimental medications of this kind in clinical trials. Understanding how these peptides gain entry, and what size of molecule they could carry with them, provides solid ground for further drug development.


Asunto(s)
Péptidos de Penetración Celular/genética , Canales de Potasio/genética , Animales , Línea Celular , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Células HeLa , Humanos , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Canales de Potasio/metabolismo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Pez Cebra
13.
Genes (Basel) ; 12(6)2021 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205376

RESUMEN

Primary prevention is crucial for coronary heart disease (CAD) and the identification of new reliable biomarkers might help risk stratification or predict adverse coronary events. Alternative splicing (AS) is a less investigated genetic factors implicated in CAD etiology. We performed an RNA-seq study on PBMCs from CAD patients and control subjects (CTR) and observed 113 differentially regulated AS events (24 up and 89 downregulated) in 86 genes. The RECK (Reversion-inducing-cysteine-rich protein with Kazal motifs) gene was further analyzed in a larger case study (24 CTR subjects, 72 CAD and 32 AMI patients) for its Splicing-Index FC (FC = -2.64; p = 0.0217), the AS event involving an exon (exon 18), and its role in vascular inflammation and remodeling. We observed a significant downregulation of Long RECK splice variant (containing exon 18) in PBMCs of AMI compared to CTR subjects (FC = -3.3; p < 0.005). Interestingly, the Short RECK splice variant (lacking exon 18) was under-expressed in AMI compared to both CTR (FC = -4.5; p < 0.0001) and CAD patients (FC = -4.2; p < 0.0001). A ROC curve, constructed combining Long and Short RECK expression data, shows an AUC = 0.81 (p < 0.001) to distinguish AMI from stable CAD patients. A significant negative correlation between Long RECK and triglycerides in CTR group and a positive correlation in the AMI group was found. The combined evaluation of Long and Short RECK expression levels is a potential genomic biomarker for the discrimination of AMI from CAD patients. Our results underline the relevance of deeper studies on the expression of these two splice variants to elucidate their functional role in CAD development and progression.


Asunto(s)
Empalme Alternativo , Enfermedad de la Arteria Coronaria/genética , Proteínas Ligadas a GPI/genética , Infarto del Miocardio/genética , Anciano , Biomarcadores/metabolismo , Células Cultivadas , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proyectos Piloto
14.
Hum Mol Genet ; 30(19): 1785-1796, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34059922

RESUMEN

Non-Syndromic Hereditary Hearing Loss (NSHHL) is a genetically heterogeneous sensory disorder with about 120 genes already associated. Through exome sequencing (ES) and data aggregation, we identified a family with six affected individuals and one unrelated NSHHL patient with predicted-to-be deleterious missense variants in USP48. We also uncovered an eighth patient presenting unilateral cochlear nerve aplasia and a de novo splice variant in the same gene. USP48 encodes a ubiquitin carboxyl-terminal hydrolase under evolutionary constraint. Pathogenicity of the variants is supported by in vitro assays that showed that the mutated proteins are unable to hydrolyze tetra-ubiquitin. Correspondingly, three-dimensional representation of the protein containing the familial missense variant is situated in a loop that might influence the binding to ubiquitin. Consistent with a contribution of USP48 to auditory function, immunohistology showed that the encoded protein is expressed in the developing human inner ear, specifically in the spiral ganglion neurons, outer sulcus, interdental cells of the spiral limbus, stria vascularis, Reissner's membrane and in the transient Kolliker's organ that is essential for auditory development. Engineered zebrafish knocked-down for usp48, the USP48 ortholog, presented with a delayed development of primary motor neurons, less developed statoacoustic neurons innervating the ears, decreased swimming velocity and circling swimming behavior indicative of vestibular dysfunction and hearing impairment. Corroboratingly, acoustic startle response assays revealed a significant decrease of auditory response of zebrafish lacking usp48 at 600 and 800 Hz wavelengths. In conclusion, we describe a novel autosomal dominant NSHHL gene through a multipronged approach combining ES, animal modeling, immunohistology and molecular assays.


Asunto(s)
Pérdida Auditiva , Pez Cebra , Animales , Pérdida Auditiva/genética , Humanos , Hidrolasas , Reflejo de Sobresalto , Ubiquitina , Proteasas Ubiquitina-Específicas , Pez Cebra/genética
15.
Mol Genet Metab Rep ; 27: 100746, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33868930

RESUMEN

Background Cystationine ß-synthase (CBS) deficiency is a genetic disorder characterized by severe hyperhomocysteinemia and thrombotic complications. In healthy individuals, physical exercise may result in a transient increase in plasma total homocysteine (tHcy) raising the possibility that exercise might be detrimental in CBS deficiency. Our main objective was to determine plasma tHcy kinetics in response to physical exercise in homocystinuria patients. Methods Six adult patients (2 males, 4 females) with homocystinuria and 6 age- and gender-matched controls completed a 30-min aerobic exercise of moderate-intensity with fixed power output (50 W for women and 100 W for men). Blood samples were drawn before, immediately, 180 min and 24 h after exercise. tHcy levels were determined by standard procedures; substrate oxidation and energy expenditure were measured using indirect calorimetry. Results Acute exercise was well tolerated and safe in patients and controls. During the exercise bout, heart rate and energy expenditure increased equally in both groups. tHcy levels were higher in patients compared to controls at all time points (p < 0.05). There was no significant effect of exercise on tHcy levels at any time point (p = 0.36). Although two patients with partial pyridoxine responsiveness presented higher homocysteine responses, their highest value remained below 55 µmol/l. Conclusions Overall metabolic responses to acute exercise were similar between homocystinuria patients and controls; specifically, exercise did not significantly change tHcy concentrations. Moderate physical exercise was well tolerated without any adverse event in our cohort of patients. Further studies are needed to identify the effects of different intensities and modes of exercise in larger cohorts of CBS patients with different levels of pyridoxine responsiveness.

16.
Heliyon ; 6(10): e05143, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33024851

RESUMEN

We collect the nasopharyngeal and oropharyngeal swabs of 63 subjects with severe symptoms or contacts with COVID-19 confirmed cases to perform a pilot-study aimed to verify the "in situ" expression of SARS-CoV-2 host invasion genes (ACE2, TMPRSS2, PCSK3, EMILIN1, EMILIN2, MMRN1, MMRN2, DPP4). ACE2 (FC = +1.88, p ≤ 0.05) and DPP4 (FC = +3, p < 0.01) genes showed a significant overexpression in COVID-19 patients. ACE2 and DPP4 expression levels had a good performance (AUC = 0.75; p < 0.001) in distinguishing COVID-19 patients from negative subjects. Interestingly, we found a significant positive association of ACE2 mRNA and PCSK3, EMILIN1, MMRN1 and MMRN2 expression and of DPP4 mRNA and EMILIN2 expression only in COVID-19 patients. Noteworthy, a subgroup of severe COVID-19 (n = 7) patients, showed significant high level of ACE2 mRNA and another subgroup of less severe COVID-19 patients (n = 6) significant raised DPP4 levels. These results indicate that a group of SARS-CoV-2 host invasion genes are functionally related in COVID-19 patients and suggests that ACE2 and DPP4 expression level could act as genomic biomarkers. Moreover, at the best of our knowledge, this is the first study that shows an elevated DPP4 expression in naso- and oropharyngeal swabs of COVID-19 patient thus suggesting a functional role of DPP4 in SARS-CoV-2 infections.

17.
EMBO Rep ; 21(7): e50287, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32496654

RESUMEN

The oxidative phosphorylation (OXPHOS) system is a dynamic system in which the respiratory complexes coexist with super-assembled quaternary structures called supercomplexes (SCs). The physiological role of SCs is still disputed. Here, we used zebrafish to study the relevance of respiratory SCs. We combined immunodetection analysis and deep data-independent proteomics to characterize these structures and found similar SCs to those described in mice, as well as novel SCs including III2  + IV2 , I + IV, and I + III2  + IV2 . To study the physiological role of SCs, we generated two null allele zebrafish lines for supercomplex assembly factor 1 (scaf1). scaf1-/- fish displayed altered OXPHOS activity due to the disrupted interaction of complexes III and IV. scaf1-/- fish were smaller in size and showed abnormal fat deposition and decreased female fertility. These physiological phenotypes were rescued by doubling the food supply, which correlated with improved bioenergetics and alterations in the metabolic gene expression program. These results reveal that SC assembly by Scaf1 modulates OXPHOS efficiency and allows the optimization of metabolic resources.


Asunto(s)
Complejo IV de Transporte de Electrones , Factores de Empalme Serina-Arginina/metabolismo , Pez Cebra , Animales , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético/genética , Femenino , Ratones , Membranas Mitocondriales/metabolismo , Fosforilación Oxidativa , Pez Cebra/genética , Pez Cebra/metabolismo
18.
EMBO J ; 39(13): e104073, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32432379

RESUMEN

Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi-site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90-95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks.


Asunto(s)
Criopreservación , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Consumo de Oxígeno , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Masculino , Ratones
19.
PLoS Genet ; 16(4): e1008665, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32315314

RESUMEN

Lipid droplets (LD) are affected in multiple human disorders. These highly dynamic organelles are involved in many cellular roles. While their intracellular dispersion is crucial to ensure their function and other organelles-contact, underlying mechanisms are still unclear. Here we show that Spastin, one of the major proteins involved in Hereditary Spastic Paraplegia (HSP), controls LD dispersion. Spastin depletion in zebrafish affects metabolic properties and organelle dynamics. These functions are ensured by a conserved complex set of splice variants. M1 isoforms determine LD dispersion in the cell by orchestrating endoplasmic reticulum (ER) shape along microtubules (MTs). To further impact LD fate, Spastin modulates transcripts levels and subcellular location of other HSP key players, notably Seipin and REEP1. In pathological conditions, mutations in human Spastin M1 disrupt this mechanism and impacts LD network. Spastin depletion influences not only other key proteins but also modulates specific neutral lipids and phospholipids, revealing an impact on membrane and organelle components. Altogether our results show that Spastin and its partners converge in a common machinery that coordinates LD dispersion and ER shape along MTs. Any alteration of this system results in HSP clinical features and impacts lipids profile, thus opening new avenues for novel biomarkers of HSP.


Asunto(s)
Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Espastina/metabolismo , Animales , Células Cultivadas , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Células HeLa , Humanos , Proteínas de Transporte de Membrana/metabolismo , Microtúbulos/metabolismo , Unión Proteica , Espastina/genética , Pez Cebra
20.
Nutrients ; 12(4)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230756

RESUMEN

Shift work is associated with increased risk of chronic diseases due to circadian rhythm disruptions and behavioral changes such as in eating habits. Impact of type of shifts and number of night shifts on energy, nutrient and food intake is as yet unknown. Our goal was to analyze shift workers' dietary intake, eating behavior and eating structure, with respect to frequency of nights worked in a given week and seven schedule types. Eating habits and dietary intakes of 65 male shift workers were analyzed in three steps based on 365 24-h food records: (1) according to the number of nights, (2) in a pooled analysis according to schedule type, and (3) in search of an interaction of the schedule and the timing of intake. Mean nutrient and food group intake during the study period did not depend on the number of nights worked. Amount and distribution of energy intake as well as quality of food, in terms of nutrient and food groups, differed depending on the type of schedule, split night shifts and recovery day (day after night shift) being the most impacted. Shift workers' qualitative and quantitative dietary intakes varied between different schedules, indicating the need for tailored preventive interventions.


Asunto(s)
Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Comidas/fisiología , Horario de Trabajo por Turnos , Tolerancia al Trabajo Programado , Adulto , Dieta/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Valor Nutritivo/fisiología , Encuestas y Cuestionarios , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...