Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Sci Rep ; 14(1): 5315, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438439

RESUMEN

Salinity poses a significant challenge to global crop productivity, affecting approximately 20% of cultivated and 33% of irrigated farmland, and this issue is on the rise. Negative impact of salinity on plant development and metabolism leads to physiological and morphological alterations mainly due to high ion concentration in tissues and the reduced water and nutrients uptake. Common bean (Phaseolus vulgaris L.), a staple food crop accounting for a substantial portion of consumed grain legumes worldwide, is highly susceptible to salt stress resulting in noticeable reduction in dry matter gain in roots and shoots even at low salt concentrations. In this study we screened a common bean panel of diversity encompassing 192 homozygous genotypes for salt tolerance at seedling stage. Phenotypic data were leveraged to identify genomic regions involved in salt stress tolerance in the species through GWAS. We detected seven significant associations between shoot dry weight and SNP markers. The candidate genes, in linkage with the regions associated to salt tolerance or harbouring the detected SNP, showed strong homology with genes known to be involved in salt tolerance in Arabidopsis. Our findings provide valuable insights onto the genetic control of salt tolerance in common bean and represent a first contribution to address the challenge of salinity-induced yield losses in this species and poses the ground to eventually breed salt tolerant common bean varieties.


Asunto(s)
Arabidopsis , Phaseolus , Tolerancia a la Sal/genética , Phaseolus/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Verduras
2.
ACS Energy Lett ; 8(7): 3239-3250, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37469389

RESUMEN

Traditional cooling and heating systems in residential buildings account for more than 15% of global electricity consumption and 10% of global emissions of greenhouse gases. Daytime radiative cooling (DRC) is an emerging passive cooling technology that has garnered significant interest in recent years due to its high cooling capability. It is expected to play a pivotal role in improving indoor and outdoor urban environments by mitigating surface and air temperatures while decreasing relevant energy demand. Yet, DRC is in its infancy, and thus several challenges need to be addressed to establish its efficient wide-scale application into the built environment. In this Perspective, we critically discuss the strategies and progress in materials development to achieve DRC and highlight the challenges and future paths to pave the way for real-life applications. Advances in nanofabrication in combination with the establishment of uniform experimental protocols, both in the laboratory/field and through simulations, are expected to drive economic increases in DRC.

3.
Chemosphere ; 335: 139028, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37268233

RESUMEN

To decrease environmental and human health risks associated with crop and soil contamination, alternative solutions are still needed. The information on strigolactones (SLs)-mediated elicitation of abiotic stress signaling and triggering physiological alterations is scarce in the plant. To unravel the same, soybean plants were subjected to cadmium (Cd) stress (20 mg kg-1), presence or absence of foliar applied SL (GR24) at the concentration of 10 µM. Excess Cd accumulation causes reduced growth (-52% shoot and +24% root), yield (-35%), physio-biochemical markers, organic acid production, and genes encoding heavy metal resilience in soybean. SL exogenous application decreased the growth and yield suppression (-12%), shielded chlorophyll (+3%), and prominently declined Cd-induced oxidative stress biomarkers accumulation in soybean. Moreover, SL effectively alleviates Cd-induced suppression in organic acids, superoxide dismutase (+73%), catalase activities (+117%), and increments ascorbate glutathione (ASA-GSH) cycle activities comprising ascorbate peroxidase, glutathione peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase. SL-mediated upregulation of genes encoding heavy metals tolerance and glyoxalase defense system in Cd stressed plants. The results of this work point out that SL could be a promising player in mitigating Cd-induced injuries effectively in soybean. It acts through the antioxidant system modulation for redox homeostasis, shielding chloroplasts, enhancing photosynthetic apparatus, and elevating organic acid production in soybean plants.


Asunto(s)
Cadmio , Metales Pesados , Humanos , Cadmio/farmacología , Glycine max/genética , Glycine max/metabolismo , Glutatión/metabolismo , Antioxidantes/metabolismo , Estrés Oxidativo , Ácido Ascórbico/farmacología , Superóxido Dismutasa/metabolismo , Metales Pesados/farmacología , Glutatión Peroxidasa/metabolismo , Plantas/metabolismo
4.
Nat Microbiol ; 8(7): 1213-1226, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37169919

RESUMEN

Malaria parasites break down host haemoglobin into peptides and amino acids in the digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine (CQ) resistance transporter, pfcrt, located in the digestive vacuole membrane, confer CQ resistance in Plasmodium falciparum, and typically also affect parasite fitness. However, the role of other parasite loci in the evolution of CQ resistance is unclear. Here we use a combination of population genomics, genetic crosses and gene editing to demonstrate that a second vacuolar transporter plays a key role in both resistance and compensatory evolution. Longitudinal genomic analyses of the Gambian parasites revealed temporal signatures of selection on a putative amino acid transporter (pfaat1) variant S258L, which increased from 0% to 97% in frequency between 1984 and 2014 in parallel with the pfcrt1 K76T variant. Parasite genetic crosses then identified a chromosome 6 quantitative trait locus containing pfaat1 that is selected by CQ treatment. Gene editing demonstrated that pfaat1 S258L potentiates CQ resistance but at a cost of reduced fitness, while pfaat1 F313S, a common southeast Asian polymorphism, reduces CQ resistance while restoring fitness. Our analyses reveal hidden complexity in CQ resistance evolution, suggesting that pfaat1 may underlie regional differences in the dynamics of resistance evolution, and modulate parasite resistance or fitness by manipulating the balance between both amino acid and drug transport.


Asunto(s)
Cloroquina , Malaria Falciparum , Humanos , Sistemas de Transporte de Aminoácidos/metabolismo , Cloroquina/metabolismo , Cloroquina/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
5.
medRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993192

RESUMEN

Challenges in understanding the origin of recurrent Plasmodium vivax infections constrains the surveillance of antimalarial efficacy and transmission of this neglected parasite. Recurrent infections within an individual may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or new inoculations (reinfection). Molecular inference of familial relatedness (identity-by-descent or IBD) based on whole genome sequence data, together with analysis of the intervals between parasitaemic episodes ("time-to-event" analysis), can help resolve the probable origin of recurrences. Whole genome sequencing of predominantly low-density P. vivax infections is challenging, so an accurate and scalable genotyping method to determine the origins of recurrent parasitaemia would be of significant benefit. We have developed a P. vivax genome-wide informatics pipeline to select specific microhaplotype panels that can capture IBD within small, amplifiable segments of the genome. Using a global set of 615 P. vivax genomes, we derived a panel of 100 microhaplotypes, each comprising 3-10 high frequency SNPs within <200 bp sequence windows. This panel exhibits high diversity in regions of the Asia-Pacific, Latin America and the horn of Africa (median HE = 0.70-0.81) and it captured 89% (273/307) of the polyclonal infections detected with genome-wide datasets. Using data simulations, we demonstrate lower error in estimating pairwise IBD using microhaplotypes, relative to traditional biallelic SNP barcodes. Our panel exhibited high accuracy in predicting the country of origin (median Matthew's correlation coefficient >0.9 in 90% countries tested) and it also captured local infection outbreak and bottlenecking events. The informatics pipeline is available open-source and yields microhaplotypes that can be readily transferred to high-throughput amplicon sequencing assays for surveillance in malaria-endemic regions.

6.
Inorg Chem ; 62(4): 1394-1404, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36653931

RESUMEN

A novel synthetic approach was investigated for the preparation of nanoplatelets of mixed zirconium phosphate bis-phosphonomethyl glycine, ZPGly, by the reaction of a gel of nanocrystalline α-type zirconium phosphate with N,N-bis-phosphonomethyl glycine, H3Gly. The syntheses were carried out in the absence of hydrofluoric acid by changing both the reagent relative amounts and temperature. An H3Gly/Zr molar ratio >2 did not significantly improve the degree of crystallinity of the materials, while an increase of temperature from 80 °C to 120 °C improved the crystallinity; the best result was obtained with H3Gly/Zr molar ratio = 2 and with a temperature reaction of 120 °C. The sample consisted of nanoplatelets with the size in the range 20-40 nm, and it was successfully exfoliated by treatment with a solution of methylamine. By treatment of the ZPGly colloidal dispersions with HAuCl4, a color change from white to red-violet was observed, indicating the formation of gold nanoparticles. The size and morphology of the gold particles were affected by the degree of crystallinity and, in turn, by the composition of the ZPGly support. As a matter of fact, large micrometric Au particles with a cubo-octahedral morphology were obtained by using the less crystalline ZPGly_R2-80 sample, while interconnected Au particles, with a size of about 16 nm, were obtained by using ZPGly_R2-120. The samples exhibited an absorption maximum in the visible region due to the surface plasmon resonance of gold nanoparticles.

7.
Commun Biol ; 5(1): 1411, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564617

RESUMEN

Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.


Asunto(s)
Malaria Vivax , Malaria , Humanos , Malaria Vivax/diagnóstico , Malaria Vivax/genética , Funciones de Verosimilitud , Plasmodium vivax/genética , Internet
8.
Wellcome Open Res ; 7: 136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651694

RESUMEN

This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.

9.
Plants (Basel) ; 11(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406839

RESUMEN

In this work, we studied the effects of in vitro oxidative stress applied by H2O2 to maize pollen germination and cytosolic Ca2+, taken as an experimental model to test the biological activity of extracts of emmer (Triticum turgidum L. spp. dicoccum (Schrank ex Shubler) Thell.) wheatgrass obtained from grains sprouted with distilled water, or salinity (50 mM) or selenium (45 mg L-1 of Na2SeO3). Wheatgrass extracts were obtained in two ways: by direct extraction in methanol, which represented the free phenolic fraction of extracts (Ef), and by residual content after alkaline digestion, which made it possible to obtain extracts with the bound fraction (Eb). Comparative tests on maize pollen were carried out by differently combining H2O2 and either wheatgrass extracts or pure phenolic acids (4-HO benzoic, caffeic, p-coumaric and salicylic). The cytosolic Ca2+ of maize pollen was influenced by either H2O2 or pure phenolic acids or Ef, but not by Eb. The negative effect of H2O2 on maize pollen germination and cytosolic Ca2+ was mitigated by Ef and, slightly, by Eb. The extent of the biological response of Ef depended on the sprouting conditions (i.e., distilled water, salinity or selenium). The extracts of Se-biofortified wheatgrass were the most effective in counteracting the oxidative stress.

10.
J Sci Food Agric ; 102(4): 1660-1664, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34455586

RESUMEN

BACKGROUND: Large amounts of chemical fertilizers are still currently used to compensate the soil nutrients scarcity in order to increase and sustain crop yield with consequent rising of environmental pollution and health problems. To mitigate these environmental risks, fertilizers with slow-release behaviours have been developed. The aim of this study was to assess the agronomic potential of two different glass-based materials (by-products from the ceramic sector) as inorganic slow-release iron (Fe) fertilizers. RESULTS: The X-ray powder diffraction confirmed the presence of amorphous structure and the richness in Fe of the investigated materials. The solubility analysis highlighted the slow Fe release from the glassy network and that the maximum of the Fe release was at alkaline pH suggesting their potential use as slow-release Fe fertilizers, especially in calcareous soils. The pot and leaching experiments demonstrated that although the glass-based materials increased the amount of soil available Fe, we did not observe Fe leaching and plant toxicity. This fact would suggest their reliability to increase soil fertility without negative effects on the environment. CONCLUSION: The use of glass-based materials, specifically by-products from the ceramic sectors, as inorganic slow-release Fe fertilizers can be sustained. The tests performed at three different pH conditions testified the slow-release behaviour of the tested materials and underlined that the Fe release increases at alkaline environment. Therefore, the present study pointed out the glass-based materials by products from the ceramic sector as novel slow-release and environmental-friendly fertilizers in agriculture. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Fertilizantes , Hierro , Agricultura , Fertilizantes/análisis , Hierro/análisis , Reproducibilidad de los Resultados , Suelo
11.
Nature ; 602(7895): 106-111, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34883497

RESUMEN

Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2-4 PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations.


Asunto(s)
Genotipo , Hemoglobina Falciforme/genética , Adaptación al Huésped/genética , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Parásitos/genética , Plasmodium falciparum/genética , Alelos , Animales , Niño , Femenino , Gambia/epidemiología , Genes Protozoarios/genética , Humanos , Kenia/epidemiología , Desequilibrio de Ligamiento , Malaria Falciparum/epidemiología , Masculino , Polimorfismo Genético
12.
Plants (Basel) ; 10(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34834652

RESUMEN

Selenium (Se) is an important micronutrient for living organisms, since it is involved in several physiological and metabolic processes. Biofortification with Se increases the nutritional and qualitative values of foods in Se-deficient regions and increases tolerance to oxidative stress in olive trees. Many studies have shown that Se, in addition to improving the qualitative and nutritional properties of EVO oil, also improves the plant's response to abiotic stress. This study addressed this issue by monitoring the effects of Se on cytosolic Ca2+ and on the germination of olive pollen grains in oxidative stress. The olive trees subjected to treatment with Na-selenate in the field produced pollen with a Se content 6-8 times higher than the controls, even after 20 months from the treatment. Moreover, part of the micronutrient was organic in selenium methionine. The higher selenium content did not produce toxic effects in the pollen, rather it antagonized the undesirable effects of oxidative stress in the parameters under study. The persistence of the beneficial effects of selenium observed over time in pollens, in addition to bringing out an undisputed adaptability of olive trees to the micronutrient, suggested the opportunity to reduce the number of treatments in the field.

13.
Materials (Basel) ; 14(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576507

RESUMEN

CeO2 nanoparticles were coated with polydopamine (PDA) by dopamine polymerization in water dispersions of CeO2 and characterized by Infrared and Near Edge X-ray Absorption Fine Structure spectroscopy, Transmission Electron Microscopy, Thermogravimetric analysis and X-ray diffraction. The resulting materials (PDAx@CeO2, with x = PDA wt% = 10, 25, 50) were employed as fillers of composite proton exchange membranes with Aquivion 830 as ionomer, to reduce the ionomer chemical degradation due to hydroxyl and hydroperoxyl radicals. Membranes, loaded with 3 and 5 wt% PDAx@CeO2, were prepared by solution casting and characterized by conductivity measurements at 80 and 110 °C, with relative humidity ranging from 50 to 90%, by accelerated ex situ degradation tests with the Fenton reagent, as well as by in situ open circuit voltage stress tests. In comparison with bare CeO2, the PDA coated filler mitigates the conductivity drop occurring at increasing CeO2 loading especially at 110 °C and 50% relative humidity but does not alter the radical scavenger efficiency of bare CeO2 for loadings up to 4 wt%. Fluoride emission rate data arising from the composite membrane degradation are in agreement with the corresponding changes in membrane mass and conductivity.

14.
Inorg Chem ; 60(18): 14294-14301, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34472330

RESUMEN

We report a novel synthetic procedure for the high-yield synthesis of metal-organic frameworks (MOFs) with fcu topology with a UiO-66-like structure starting from a range of commercial ZrIV precursors and various substituted dicarboxylic linkers. The syntheses are carried out by grinding in a ball mill the starting reagents, namely, Zr salts and the dicarboxylic linkers, in the presence of a small amount of acetic acid and water (1 mL total volume for 1 mmol of each reagent), followed by incubation at either room temperature or 120 °C. Such a simple "shake 'n bake" procedure, inspired by the solid-state reaction of inorganic materials, such as oxides, avoids the use of large amounts of solvents generally used for the syntheses of Zr-MOF. Acidity of the linkers and the amount of water are found to be crucial factors in affording materials of quality comparable to that of products obtained under solvo- or hydrothermal conditions.

15.
Plants (Basel) ; 10(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34451675

RESUMEN

Selenium is an essential micronutrient that provides important benefits to plants and humans. At proper concentrations, selenium increases plant growth, pollen vitality, the shelf life of fresh products, and seems to improve stress resistance; these effects can certainly be attributed to its direct and indirect antioxidant capacity. For these reasons, in the present work, the effects of selenium at different dosages on in vitro cultivated olive explants were investigated to observe possible positive effects (in terms of growth and vigor) on the proliferation phase. The work was carried out on four different olive cultivars: "San Felice", "Canino", "Frantoio", and "Moraiolo". The explants were cultured in aseptic conditions on olive medium (OM), with the addition of 4 mg·L-1 of zeatin, 30 g·L-1 of sucrose, and 7 g·L-1 of agar. The experimental scheme included a comparison between explants grown with five different concentrations of Na2SeO4 (0, 10, 20, 40, and 80 mg L-1) added to the medium during three successive subcultures. Interesting information has emerged from the results and all varieties responded to different concentrations of Selenium. The optimal Se dosages varied for each cultivar, but in general, Se concentration between 10 and 40 mg L-1 increased fresh and dry weight of the explants and shoot lengths. Se treatment induced in all cultivars and for all dosages used an increase in total Se content in proliferated explants. Furthermore, as the subcultures proceeded, the ability of the explants to absorb Se did not diminish. The Se content ranged from 8.55 to 114.21 µg kg-1 plant DW in 'Frantoio', from 9.83 to 94.85 µg kg-1 plant DW in 'Moraiolo', from 19.84 to 114.21 µg kg-1 plant DW in 'Canino', and from 20.97 to 95.54 µg kg-1 plant DW in 'San Felice'. In general, the effect of selenium tends to decrease with the progress of subcultures and this suggests a sort of "adaptation" effect of the explants to its presence. The present study highlights for the first time the possibility of using in vitro cultures as biotechnological support to study supplementation with selenium and its effects on in vitro olive plant growth.

16.
Plants (Basel) ; 10(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34451770

RESUMEN

In this study, the in vitro effects of different Se concentrations (5, 10, 15, 20, and 100 mg kg-1) from different Se forms (sodium selenite, sodium selenate, selenomethionine, and selenocystine) on the development of a Fusarium proliferatum strain isolated from rice were investigated. A concentration-dependent effect was detected. Se reduced fungal growth starting from 10 mg kg-1 and increasing the concentration (15, 20, and 100 mg kg-1) enhanced the inhibitory effect. Se bioactivity was also chemical form dependent. Selenocystine was found to be the most effective at the lowest concentration (5 mg kg-1). Complete growth inhibition was observed at 20 mg kg-1 of Se from selenite, selenomethionine, and selenocystine. Se speciation analysis revealed that fungus was able to change the Se speciation when the lowest Se concentration was applied. Scanning Electron Microscopy showed an alteration of the fungal morphology induced by Se. Considering that the inorganic forms have a higher solubility in water and are cheaper than organic forms, 20 mg kg-1 of Se from selenite can be suggested as the best combination suitable to inhibit F. proliferatum strain. The addition of low concentrations of Se from selenite to conventional fungicides may be a promising alternative approach for the control of Fusarium species.

17.
Elife ; 102021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34387545

RESUMEN

Monitoring the spread of SARS-CoV-2 and reconstructing transmission chains has become a major public health focus for many governments around the world. The modest mutation rate and rapid transmission of SARS-CoV-2 prevents the reconstruction of transmission chains from consensus genome sequences, but within-host genetic diversity could theoretically help identify close contacts. Here we describe the patterns of within-host diversity in 1181 SARS-CoV-2 samples sequenced to high depth in duplicate. 95.1% of samples show within-host mutations at detectable allele frequencies. Analyses of the mutational spectra revealed strong strand asymmetries suggestive of damage or RNA editing of the plus strand, rather than replication errors, dominating the accumulation of mutations during the SARS-CoV-2 pandemic. Within- and between-host diversity show strong purifying selection, particularly against nonsense mutations. Recurrent within-host mutations, many of which coincide with known phylogenetic homoplasies, display a spectrum and patterns of purifying selection more suggestive of mutational hotspots than recombination or convergent evolution. While allele frequencies suggest that most samples result from infection by a single lineage, we identify multiple putative examples of co-infection. Integrating these results into an epidemiological inference framework, we find that while sharing of within-host variants between samples could help the reconstruction of transmission chains, mutational hotspots and rare cases of superinfection can confound these analyses.


The COVID-19 pandemic has had major health impacts across the globe. The scientific community has focused much attention on finding ways to monitor how the virus responsible for the pandemic, SARS-CoV-2, spreads. One option is to perform genetic tests, known as sequencing, on SARS-CoV-2 samples to determine the genetic code of the virus and to find any differences or mutations in the genes between the viral samples. Viruses mutate within their hosts and can develop into variants that are able to more easily transmit between hosts. Genetic sequencing can reveal how genetically similar two SARS-CoV-2 samples are. But tracking how SARS-CoV-2 moves from one person to the next through sequencing can be tricky. Even a sample of SARS-CoV-2 viruses from the same individual can display differences in their genetic material or within-host variants. Could genetic testing of within-host variants shed light on factors driving SARS-CoV-2 to evolve in humans? To get to the bottom of this, Tonkin-Hill, Martincorena et al. probed the genetics of SARS-CoV-2 within-host variants using 1,181 samples. The analyses revealed that 95.1% of samples contained within-host variants. A number of variants occurred frequently in many samples, which were consistent with mutational hotspots in the SARS-CoV-2 genome. In addition, within-host variants displayed mutation patterns that were similar to patterns found between infected individuals. The shared within-host variants between samples can help to reconstruct transmission chains. However, the observed mutational hotspots and the detection of multiple strains within an individual can make this challenging. These findings could be used to help predict how SARS-CoV-2 evolves in response to interventions such as vaccines. They also suggest that caution is needed when using information on within-host variants to determine transmission between individuals.


Asunto(s)
COVID-19/genética , COVID-19/fisiopatología , Variación Genética , Genoma Viral , Interacciones Huésped-Patógeno/genética , Mutación , SARS-CoV-2/genética , Secuencia de Bases , Humanos , Pandemias , Filogenia
18.
Sensors (Basel) ; 21(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34372488

RESUMEN

Nowadays, after suffering a fracture in an upper or lower limb, a plaster cast is placed on the affected limb. It is a very old and efficient technique for recovery from an injury that has not had significant changes since its origin. This project aims to develop a new low-cost smart 3D printed splint concept by using new sensing techniques. Two rapidly evolving Advanced Manufacturing (AM) technologies will be used: 3D scanning and 3D printing, thus combining engineering, medicine and materials evolution. The splint will include new small and lightweight sensors to detect any problem during the treatment process. Previous studies have already incorporated this kind of sensor for medical purposes. However, in this study it is implemented with a new concept: the possibility of applying treatments during the immobilization process and obtaining information from the sensors to modify the treatment. Due to this, rehabilitation treatments like infrared, ultrasounds or electroshock may be applied during the treatment, and the sensors (as it is showed in the study) will be able to detect changes during the rehabilitation process. Data of the pressure, temperature, humidity and colour of the skin will be collected in real time and sent to a mobile device so that they can be consulted remotely by a specialist. Moreover, it would be possible to include these data into the Internet of Things movement. This way, all the collected data might be compared and studied in order to find the best treatment for each kind of injury. It will be necessary to use a biocompatible material, submersible and suitable for contact with skin. These materials make it necessary to control the conditions in which the splint is produced, to assure that the properties are maintained. This development, makes it possible to design a new methodology that will help to provide faster and easier treatment.


Asunto(s)
Impresión Tridimensional , Férulas (Fijadores) , Humedad , Extremidad Inferior , Temperatura
19.
Wellcome Open Res ; 6: 42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33824913

RESUMEN

MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.

20.
Genome Biol ; 22(1): 196, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34210356

RESUMEN

In response to the ongoing SARS-CoV-2 pandemic in the UK, the COVID-19 Genomics UK (COG-UK) consortium was formed to rapidly sequence SARS-CoV-2 genomes as part of a national-scale genomic surveillance strategy. The network consists of universities, academic institutes, regional sequencing centres and the four UK Public Health Agencies. We describe the development and deployment of CLIMB-COVID, an encompassing digital infrastructure to address the challenge of collecting and integrating both genomic sequencing data and sample-associated metadata produced across the COG-UK network.


Asunto(s)
Nube Computacional , Genómica/organización & administración , SARS-CoV-2/genética , COVID-19/epidemiología , Monitoreo Epidemiológico , Genoma Viral , Humanos , Análisis de Secuencia de ADN , Reino Unido , Interfaz Usuario-Computador , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...