Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 106(1): 67-84, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38428734

RESUMEN

Parietal epithelial cells (PECs) are kidney progenitor cells with similarities to a bone marrow stem cell niche. In focal segmental glomerulosclerosis (FSGS) PECs become activated and contribute to extracellular matrix deposition. Colony stimulating factor-1 (CSF-1), a hematopoietic growth factor, acts via its specific receptor, CSF-1R, and has been implicated in several glomerular diseases, although its role on PEC activation is unknown. Here, we found that CSF-1R was upregulated in PECs and podocytes in biopsies from patients with FSGS. Through in vitro studies, PECs were found to constitutively express CSF-1R. Incubation with CSF-1 induced CSF-1R upregulation and significant transcriptional regulation of genes involved in pathways associated with PEC activation. Specifically, CSF-1/CSF-1R activated the ERK1/2 signaling pathway and upregulated CD44 in PECs, while both ERK and CSF-1R inhibitors reduced CD44 expression. Functional studies showed that CSF-1 induced PEC proliferation and migration, while reducing the differentiation of PECs into podocytes. These results were validated in the Adriamycin-induced FSGS experimental mouse model. Importantly, treatment with either the CSF-1R-specific inhibitor GW2580 or Ki20227 provided a robust therapeutic effect. Thus, we provide evidence of the role of the CSF-1/CSF-1R pathway in PEC activation in FSGS, paving the way for future clinical studies investigating the therapeutic effect of CSF-1R inhibitors on patients with FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Receptores de Hialuranos , Factor Estimulante de Colonias de Macrófagos , Podocitos , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Animales , Humanos , Podocitos/metabolismo , Podocitos/patología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Factor Estimulante de Colonias de Macrófagos/genética , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Ratones , Proliferación Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/efectos de los fármacos , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Masculino , Modelos Animales de Enfermedad , Células Cultivadas , Femenino , Regulación hacia Arriba , Movimiento Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal , Ratones Endogámicos C57BL , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos
2.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003727

RESUMEN

Atherosclerosis is the primary cause of cardiovascular disease. The development of plaque complications, such as calcification and neo-angiogenesis, strongly impacts plaque stability and is a good predictor of mortality in patients with atherosclerosis. Despite well-known risk factors of plaque complications, such as diabetes mellitus and chronic kidney disease, the mechanisms involved are not fully understood. We and others have identified that the concentration of circulating leucine-rich α-2 glycoprotein 1 (LRG1) was increased in diabetic and chronic kidney disease patients. Using apolipoprotein E knockout mice (ApoE-/-) (fed with Western diet) that developed advanced atherosclerosis and using human carotid endarterectomy, we showed that LRG1 accumulated into an atherosclerotic plaque, preferentially in calcified areas. We then investigated the possible origin of LRG1 and its functions on vascular cells and found that LRG1 expression was specifically enhanced in endothelial cells via inflammatory mediators and not in vascular smooth muscle cells (VSMC). Moreover, we identified that LRG1 was able to induce calcification and SMAD1/5-signaling pathways in VSMC. In conclusion, our results identified for the first time that LRG1 is a direct contributor to vascular calcification and suggest a role of this molecule in the development of plaque complications in patients with atherosclerosis.


Asunto(s)
Aterosclerosis , Insuficiencia Renal Crónica , Calcificación Vascular , Animales , Humanos , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Leucina/metabolismo , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Insuficiencia Renal Crónica/metabolismo , Calcificación Vascular/etiología , Calcificación Vascular/metabolismo
3.
Sci Transl Med ; 15(712): eabn5939, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37672568

RESUMEN

Vascular calcification is an important risk factor for cardiovascular (CV) mortality in patients with chronic kidney disease (CKD). It is also a complex process involving osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) and abnormal deposition of minerals in the vascular wall. In an observational, multicenter European study, including 112 patients with CKD from Spain and 171 patients on dialysis from France, we used serum proteome analysis and further validation by ELISA to identify calprotectin, a circulating damage-associated molecular pattern protein, as being independently associated with CV outcome and mortality. This was confirmed in an additional cohort of 170 patients with CKD from Sweden, where increased serum calprotectin concentrations correlated with increased vascular calcification. In primary human VSMCs and mouse aortic rings, calprotectin exacerbated calcification. Treatment with paquinimod, a calprotectin inhibitor, as well as pharmacological inhibition of the receptor for advanced glycation end products and Toll-like receptor 4 inhibited the procalcifying effect of calprotectin. Paquinimod also ameliorated calcification induced by the sera of uremic patients in primary human VSMCs. Treatment with paquinimod prevented vascular calcification in mice with chronic renal failure induced by subtotal nephrectomy and in aged apolipoprotein E-deficient mice as well. These observations identified calprotectin as a key contributor of vascular calcification, and increased circulating calprotectin was strongly and independently associated with calcification, CV outcome, and mortality in patients with CKD. Inhibition of calprotectin might therefore be a promising strategy to prevent vascular calcification in patients with CKD.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Calcificación Vascular , Humanos , Animales , Ratones , Anciano , Complejo de Antígeno L1 de Leucocito , Insuficiencia Renal Crónica/complicaciones , Alarminas
5.
Crit Care ; 26(1): 344, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36345008

RESUMEN

BACKGROUND: The delayed diagnosis of acute kidney injury (AKI) episodes and the lack of specificity of current single AKI biomarkers hamper its management. Urinary peptidome analysis may help to identify early molecular changes in AKI and grasp its complexity to identify potential targetable molecular pathways. METHODS: In derivation and validation cohorts totalizing 1170 major cardiac bypass surgery patients and in an external cohort of 1569 intensive care unit (ICU) patients, a peptide-based score predictive of AKI (7-day KDIGO classification) was developed, validated, and compared to the reference biomarker urinary NGAL and NephroCheck and clinical scores. RESULTS: A set of 204 urinary peptides derived from 48 proteins related to hemolysis, inflammation, immune cells trafficking, innate immunity, and cell growth and survival was identified and validated for the early discrimination (< 4 h) of patients according to their risk to develop AKI (OR 6.13 [3.96-9.59], p < 0.001) outperforming reference biomarkers (urinary NGAL and [IGFBP7].[TIMP2] product) and clinical scores. In an external cohort of 1569 ICU patients, performances of the signature were similar (OR 5.92 [4.73-7.45], p < 0.001), and it was also associated with the in-hospital mortality (OR 2.62 [2.05-3.38], p < 0.001). CONCLUSIONS: An overarching AKI physiopathology-driven urinary peptide signature shows significant promise for identifying, at an early stage, patients who will progress to AKI and thus to develop tailored treatments for this frequent and life-threatening condition. Performance of the urine peptide signature is as high as or higher than that of single biomarkers but adds mechanistic information that may help to discriminate sub-phenotypes of AKI offering new therapeutic avenues.


Asunto(s)
Lesión Renal Aguda , Humanos , Lipocalina 2 , Valor Predictivo de las Pruebas , Lesión Renal Aguda/diagnóstico , Biomarcadores , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...