Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 188: 114650, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36758312

RESUMEN

Sediment quality assessment is vital while assessing the quality of rivers since sediments can alter the water quality depending on pH, redox conditions, and other physico-chemical characteristics. The present study aims to assess the heavy metal concentration in the size-fractionated sediments of River Ganga, and ascertain the sources of contamination in upper Himalayan stretch of around 300 km. The bed sediments of River Ganga were collected from Gomukh, Bhojwasa, Gangotri, Jhala Bridge, Chinyalisaur, Devaprayag, and Rishikesh; and these were size-fractionated in the range of 0-75, 75-150, 150-200, 200-250, 350-300, 300-450, 450-600 µm particle size to determine the concentration of heavy metals associated with each range of particle size using Atomic Absorption Spectrophotometer (AAS). The mean concentration of the metals in the sediments varied in the order Al (126 g/kg) > Fe (68 g/kg) > Cr (79 mg/kg) > Zn (67 mg/kg) > Pb (59 mg/kg) > Ni (38 mg/kg) > Cu (36 mg/kg) > Cd (2 mg/kg), and representing more affinity of metals with finer particle size of sediments. Contamination Factor and Metal Enrichment Factor indicated that sediments in the lower stretch were contaminated and enriched with many toxic metals. Geo-accumulation index, Sediment Pollution Index, and Pollution Load Index revealed that the sediments of Chinyalisaur, Devaprayag, and Rishikesh were moderately to strongly polluted and are progressively getting deteriorated by metals, thus, classifying these locations as hotspots of contamination. The major sources of Al and Fe were found to be natural; whereas Cr, Zn, Pb, Ni, Cu and Cd were mainly contributed by anthropogenic sources. The study stresses for immediate interventions to control further contamination by restricting addition of wastewater directly to River Ganga, or through other streams in Ganga basin.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Ríos/química , Cadmio , Plomo , Monitoreo del Ambiente , Sedimentos Geológicos/química , Metales Pesados/análisis , India , Calidad del Agua , Medición de Riesgo
2.
Environ Sci Pollut Res Int ; 29(5): 6670-6677, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34453257

RESUMEN

Mining of minerals exerts adverse pressure on different compartments of environment directly or indirectly. Air is the worst affected environmental matrix, and it can carry the harmful effect of pollutants generated from mining activity even to distant places. The present study was undertaken to estimate the emission of particulate matter (PM2.5 and PM10) from different activities undertaken in stone quarrying in Mahendragarh, Haryana. The results obtained from the present study indicated that drilling, blasting, crushing, and transport of mined material are chiefly responsible for the generation of dust. Whereas drilling, blasting, and loading were responsible for emission of higher fraction of PM10, crushing and re-suspension of roadside dust from movement of vehicles resulted in generation of relatively higher fraction of finer dust (PM2.5). Modelling the transport of dust over the Hybrid Single-Particle Lagrangian Integrated Trajectory model revealed that the emitted particle may move up to the distance of about 40 km within 4 h of emission under average meteorological conditions. Fourier transform infrared (FTIR) spectroscopy analysis of dust confirmed the presence of calcite and gypsum, thus confirming the source as mining. The study concluded that generation of PM2.5-sized particles may impose serious respiratory health effects over the workers engaged in mining, crushing, and transportation of sandstone. Apart from it, population residing downwind of the mining area is particularly vulnerable to the pulmonary effects due to inhalation of dust.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Contaminantes Atmosféricos/análisis , Polvo/análisis , Monitoreo del Ambiente , Humanos , Minerales , Minería , Tamaño de la Partícula , Material Particulado/análisis , Transportes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...