Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1157421, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960056

RESUMEN

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, lack of attached gingiva and thin and fragile gums leading to gingival recession. Connective tissue abnormalities of pEDS typically include easy bruising, pretibial plaques, distal joint hypermobility, hoarse voice, and less commonly manifestations such as organ or vessel rupture. pEDS is caused by heterozygous missense mutations in C1R and C1S genes of the classical complement C1 complex. Previously we showed that pEDS pathogenic variants trigger intracellular activation of C1r and/or C1s, leading to extracellular presence of activated C1s. However, the molecular link relating activated C1r and C1s proteases to the dysregulated connective tissue homeostasis in pEDS is unknown. Using cell- and molecular-biological assays, we identified activated C1s (aC1s) as an enzyme which degrades collagen I in cell culture and in in vitro assays. Matrix collagen turnover in cell culture was assessed using labelled hybridizing peptides, which revealed fast and comprehensive collagen protein remodeling in patient fibroblasts. Furthermore, collagen I was completely degraded by aC1s when assays were performed at 40°C, indicating that even moderate elevated temperature has a tremendous impact on collagen I integrity. This high turnover is expected to interfere with the formation of a stable ECM and result in tissues with loose compaction a hallmark of the EDS phenotype. Our results indicate that pathogenesis in pEDS is not solely mediated by activation of the complement cascade but by inadequate C1s-mediated degradation of matrix proteins, confirming pEDS as a primary connective tissue disorder.


Asunto(s)
Complemento C1s , Síndrome de Ehlers-Danlos , Humanos , Colágeno Tipo I/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Mutación Missense , Complemento C1s/genética
3.
Cell Mol Life Sci ; 79(11): 562, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36271951

RESUMEN

Multifunctional proteins are challenging as it can be difficult to confirm pathomechanisms associated with disease-causing genetic variants. The human 17ß-hydroxysteroid dehydrogenase 10 (HSD10) is a moonlighting enzyme with at least two structurally and catalytically unrelated functions. HSD10 disease was originally described as a disorder of isoleucine metabolism, but the clinical manifestations were subsequently shown to be linked to impaired mtDNA transcript processing due to deficient function of HSD10 in the mtRNase P complex. A surprisingly large number of other, mostly enzymatic and potentially clinically relevant functions have been attributed to HSD10. Recently, HSD10 was reported to exhibit phospholipase C-like activity towards cardiolipins (CL), important mitochondrial phospholipids. To assess the physiological role of the proposed CL-cleaving function, we studied CL architectures in living cells and patient fibroblasts in different genetic backgrounds and lipid environments using our well-established LC-MS/MS cardiolipidomic pipeline. These experiments revealed no measurable effect on CLs, indicating that HSD10 does not have a physiologically relevant function towards CL metabolism. Evolutionary constraints could explain the broad range of reported substrates for HSD10 in vitro. The combination of an essential structural with a non-essential enzymatic function in the same protein could direct the evolutionary trajectory towards improvement of the former, thereby increasing the flexibility of the binding pocket, which is consistent with the results presented here.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas , Hidroxiesteroide Deshidrogenasas , Humanos , 3-Hidroxiacil-CoA Deshidrogenasas/genética , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Cardiolipinas , Cromatografía Liquida , Espectrometría de Masas en Tándem , ADN Mitocondrial , Fosfolipasas de Tipo C
4.
Am J Hum Genet ; 108(11): 2195-2204, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34715011

RESUMEN

Human mitochondrial RNase P (mt-RNase P) is responsible for 5' end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.


Asunto(s)
Alelos , Pleiotropía Genética , Mitocondrias/enzimología , ARN Mitocondrial/genética , ARN de Transferencia/genética , Ribonucleasa P/genética , Adulto , Femenino , Humanos , Masculino , Linaje
5.
Hum Mutat ; 41(6): 1145-1156, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32126153

RESUMEN

Uncovering frequent motives of action by which variants impair 3' splice site (3'ss) recognition and selection is essential to improve our understanding of this complex process. Through several mini-gene experiments, we demonstrate that the pyrimidine (Y) to purine (R) transversion NM_000267.3(NF1):c.1722-11T>G, although expected to weaken the polypyrimidine tract, causes exon skipping primarily by introducing a novel AG in the AG-exclusion zone (AGEZ) between the authentic 3'ss AG and the branch point. Evaluation of 90 additional noncanonical intronic NF1 3'ss mutations confirmed that 63% of all mutations and 89% (49/55) of the single-nucleotide variants upstream of positions -3 interrupt the AGEZ. Of these AGEZ-interrupting mutations, 24/49 lead to exon skipping suggesting that absence of AG in this region is necessary for accurate 3'ss selection already in the initial steps of splicing. The analysis of 91 noncanonical NF1 3'ss mutations also shows that 90% either introduce a novel AG in the AGEZ, cause a Y>R transversion at position -3 or remove ≥2 Ys in the AGEZ. We confirm in a validation cohort that these three motives distinguish spliceogenic from splice-neutral variants with 85% accuracy and, therefore, are generally applicable to select among variants of unknown significance those likely to affect splicing.


Asunto(s)
Intrones , Neurofibromina 1/genética , Sitios de Empalme de ARN , Empalme del ARN , Adulto , Empalme Alternativo , Secuencia de Bases , Exones , Femenino , Humanos , Mutación , Ribonucleoproteínas Nucleares Pequeñas/genética
7.
Front Immunol ; 10: 2537, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749804

RESUMEN

Heterozygous missense or in-frame insertion/deletion mutations in complement 1 subunits C1r and C1s cause periodontal Ehlers-Danlos Syndrome (pEDS), a specific EDS subtype characterized by early severe periodontal destruction and connective tissue abnormalities like easy bruising, pretibial haemosiderotic plaques, and joint hypermobility. We report extensive functional studies of 16 C1R variants associated with pEDS by in-vitro overexpression studies in HEK293T cells followed by western blot, size exclusion chromatography and surface plasmon resonance analyses. Patient-derived skin fibroblasts were analyzed by western blot and Enzyme-linked Immunosorbent Assay (ELISA). Overexpression of C1R variants in HEK293T cells revealed that none of the pEDS variants was integrated into the C1 complex but cause extracellular presence of catalytic C1r/C1s activities. Variants showed domain-specific abnormalities of intracellular processing and secretion with preservation of serine protease function in the supernatant. In contrast to C1r wild type, and with the exception of a C1R missense variant disabling a C1q binding site, pEDS variants had different impact on the cell: retention of C1r fragments inside the cell, secretion of aggregates, or a new C1r cleavage site. Overexpression of C1R variants in HEK293T as well as western blot analyses of patient fibroblasts showed decreased levels of secreted C1r. Importantly, all available patient fibroblasts exhibited activated C1s and activation of externally added C4 in the supernatant while control cell lines secreted proenzyme C1s and showed no increase in C4 activation. The central elements in the pathogenesis of pEDS seem to be the intracellular activation of C1r and/or C1s, and extracellular presence of activated C1s that independently of microbial triggers can activate the classical complement cascade.


Asunto(s)
Complemento C1/inmunología , Complemento C1r/inmunología , Síndrome de Ehlers-Danlos/inmunología , Enfermedades Periodontales/inmunología , Células Cultivadas , Activación de Complemento , Complemento C1r/genética , Síndrome de Ehlers-Danlos/genética , Fibroblastos/inmunología , Humanos , Mutación , Enfermedades Periodontales/genética
8.
Front Immunol ; 10: 2962, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921203

RESUMEN

Ehlers-Danlos syndromes (EDS) are clinically and genetically heterogeneous disorders characterized by soft connective tissue alteration like joint hypermobility and skin hyper-extensibility. We previously identified heterozygous missense mutations in the C1R and C1S genes, coding for the complement C1 proteases, in patients affected by periodontal EDS, a specific EDS subtype hallmarked by early severe periodontitis leading to premature loss of teeth and connective tissue alterations. Up to now, there is no clear molecular link relating the nominal role of the C1r and C1s proteases, which is to activate the classical complement pathway, to these heterogeneous symptoms of periodontal EDS syndrome. We aim therefore to elucidate the functional effect of these mutations, at the molecular and enzymatic levels. To explore the molecular consequences, a set of cell transfection experiments, recombinant protein purification, mass spectroscopy and N-terminal analyses have been performed. Focusing on the results obtained on two different C1S variants, namely p.Val316del and p.Cys294Arg, we show that HEK293-F cells stably transfected with the corresponding C1s variant plasmids, unexpectedly, do not secrete the full-length mutated C1s, but only a truncated Fg40 fragment of 40 kDa, produced at very low levels. Detailed analyses of the Fg40 fragments purified for the two C1s variants show that they are identical, which was also unexpected. This suggests that local misfolding of the CCP1 module containing the patient mutation exposes a novel cleavage site, between Lys353 and Cys354, which is not normally accessible. The mutation-induced Fg40 fragment contains the intact C-terminal serine protease domain but not the N-terminal domain mediating C1s interaction with the other C1 subunits, C1r, and C1q. Thus, Fg40 enzymatic activity escapes the normal physiological control of C1s activity within C1, potentially providing a loss-of-control. Comparative enzymatic analyses show that Fg40 retains the native esterolytic activity of C1s, as well as its cleavage efficiency toward the ancillary alarmin HMGB1 substrate, for example, whereas the nominal complement C4 activation cleavage is impaired. These new results open the way to further molecular explorations possibly involving subsidiary C1s targets.


Asunto(s)
Complemento C1r , Complemento C1s , Síndrome de Ehlers-Danlos , Mutación Missense , Enfermedades Periodontales , Sustitución de Aminoácidos , Complemento C1r/genética , Complemento C1r/inmunología , Complemento C1s/genética , Complemento C1s/inmunología , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/inmunología , Síndrome de Ehlers-Danlos/patología , Células HEK293 , Humanos , Enfermedades Periodontales/genética , Enfermedades Periodontales/inmunología , Enfermedades Periodontales/patología , Pliegue de Proteína
9.
J Biol Chem ; 293(33): 12862-12876, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29880640

RESUMEN

Mitochondrial tRNAs are transcribed as long polycistronic transcripts of precursor tRNAs and undergo posttranscriptional modifications such as endonucleolytic processing and methylation required for their correct structure and function. Among them, 5'-end processing and purine 9 N1-methylation of mitochondrial tRNA are catalyzed by two proteinaceous complexes with overlapping subunit composition. The Mg2+-dependent RNase P complex for 5'-end cleavage comprises the methyltransferase domain-containing protein tRNA methyltransferase 10C, mitochondrial RNase P subunit (TRMT10C/MRPP1), short-chain oxidoreductase hydroxysteroid 17ß-dehydrogenase 10 (HSD17B10/MRPP2), and metallonuclease KIAA0391/MRPP3. An MRPP1-MRPP2 subcomplex also catalyzes the formation of 1-methyladenosine/1-methylguanosine at position 9 using S-adenosyl-l-methionine as methyl donor. However, a lack of structural information has precluded insights into how these complexes methylate and process mitochondrial tRNA. Here, we used a combination of X-ray crystallography, interaction and activity assays, and small angle X-ray scattering (SAXS) to gain structural insight into the two tRNA modification complexes and their components. The MRPP1 N terminus is involved in tRNA binding and monomer-monomer self-interaction, whereas the C-terminal SPOUT fold contains key residues for S-adenosyl-l-methionine binding and N1-methylation. The entirety of MRPP1 interacts with MRPP2 to form the N1-methylation complex, whereas the MRPP1-MRPP2-MRPP3 RNase P complex only assembles in the presence of precursor tRNA. This study proposes low-resolution models of the MRPP1-MRPP2 and MRPP1-MRPP2-MRPP3 complexes that suggest the overall architecture, stoichiometry, and orientation of subunits and tRNA substrates.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/química , Metiltransferasas/química , Modelos Moleculares , Complejos Multienzimáticos/química , ARN Mitocondrial/química , ARN de Transferencia/química , Ribonucleasa P/química , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Cristalografía por Rayos X , Humanos , Metiltransferasas/metabolismo , Complejos Multienzimáticos/metabolismo , ARN Mitocondrial/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasa P/metabolismo , Dispersión del Ángulo Pequeño
10.
Cell Physiol Biochem ; 46(2): 713-726, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29621776

RESUMEN

BACKGROUND/AIMS: Reactive dicarbonyl compounds, such as methylglyoxal (MG), contribute to diabetic complications. MG-scavenging capacities of carnosine and anserine, which have been shown to mitigate diabetic nephropathy, were evaluated in vitro and in vivo. METHODS: MG-induced cell toxicity was characterized by MTT and MG-H1-formation, scavenging abilities by Western Blot and NMR spectroscopies, cellular carnosine transport by qPCR and microplate luminescence and carnosine concentration by HPLC. RESULTS: In vitro, carnosine and anserine dose-dependently reduced N-carboxyethyl lysine (CEL) and advanced glycation end products (AGEs) formation. NMR studies revealed the formation of oligo/polymeric products of MG catalyzed by carnosine or anserine. MG toxicity (0.3-1 mM) was dose-dependent for podocytes, tubular and mesangial cells whereas low MG levels (0.2 mM) resulted in increased cell viability in podocytes (143±13%, p<0.001) and tubular cells (129±3%, p<0.001). Incubation with carnosine/anserine did not reduce MG-induced toxicity, independent of incubation times and across large ranges of MG to carnosine/anserine ratios. Cellular carnosine uptake was low (<0.1% in 20 hours) and cellular carnosine concentrations remained unaffected. The putative carnosine transporter PHT1 along with the taurine transporter (TauT) was expressed in all cell types while PEPT1, PEPT2 and PHT2, also belonging to the proton-coupled oligopeptide transporter (POT) family, were only expressed in tubular cells. CONCLUSION: While carnosine and anserine catalyze the formation of MG oligo/polymers, the molar ratios required for protection from MG-induced cellular toxicity are not achievable in renal cells. The effect of carnosine in vivo, to mitigate diabetic nephropathy may therefore be independent upon its ability to scavenge MG and/or carnosine is mainly acting extracellularly.


Asunto(s)
Carnosina/química , Carnosina/metabolismo , Polímeros/química , Piruvaldehído/química , Animales , Anserina/análisis , Anserina/química , Anserina/metabolismo , Carnosina/análisis , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Glutatión/análisis , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Podocitos/citología , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Polímeros/metabolismo , Piruvaldehído/toxicidad , Albúmina Sérica/química , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Simportadores/genética , Simportadores/metabolismo
11.
Am J Hum Genet ; 99(5): 1005-1014, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27745832

RESUMEN

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis.


Asunto(s)
Complemento C1r/genética , Complemento C1s/genética , Síndrome de Ehlers-Danlos/genética , Eliminación de Gen , Mutación Missense , Periodontitis/genética , Adolescente , Adulto , Niño , Preescolar , Mapeo Cromosómico , Cromosomas Humanos Par 12/genética , Síndrome de Ehlers-Danlos/diagnóstico , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Exoma , Femenino , Sitios Genéticos , Humanos , Masculino , Linaje , Periodontitis/diagnóstico , Conformación Proteica , Adulto Joven
12.
Cancer Lett ; 374(1): 149-155, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-26884257

RESUMEN

Mitochondrial energy production is reduced in tumor cells, and altered mitochondrial respiration contributes to tumor progression. Synthesis of proteins coded by mitochondrial DNA (mtDNA) requires the correct processing of long polycistronic precursor RNA molecules. Mitochondrial RNase P, composed of three different proteins (MRPP1, HSD10, and MRPP3), is necessary for correct RNA processing. Here we analyzed the role of RNase P proteins in colorectal cancer. High HSD10 expression was found in 28%; high MRPP1 expression in 40% of colorectal cancers, respectively. Expression of both proteins was not significantly associated with clinicopathological parameters. Survival analysis revealed that loss of HSD10 expression is associated with poor prognosis. Cox regression demonstrated that patients with high HSD10 tumors are at lower risk. High HSD10 expression was significantly associated with high mtDNA content in tumor tissue. A causal effect of HSD10 overexpression or knock down with increased or reduced mtDNA levels, respectively, was confirmed in tumor cell lines. Our data suggest that HSD10 plays a role in alterations of energy metabolism by regulating mtDNA content in colorectal carcinomas, and HSD10 protein analysis may be of prognostic value.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/biosíntesis , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , ADN Mitocondrial/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Anciano , Línea Celular Tumoral , ADN Mitocondrial/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
13.
Eur J Hum Genet ; 24(2): 258-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26014432

RESUMEN

Screening for founder mutations in BRCA1 and BRCA2 has been discussed as a cost-effective testing strategy in certain populations. In this study, comprehensive BRCA1 and BRCA2 testing was performed in a routine diagnostic setting. The prevalence of the BRCA1 stop mutation c.4183C>T, p.(Gln1395Ter), was determined in unselected breast and ovarian cancer patients from different regions in the Tyrol. Cancer registry data were used to evaluate the impact of this mutation on regional cancer incidence. The mutation c.4183C>T was detected in 30.4% of hereditary BRCA1-associated breast and ovarian cancer patients in our cohort. It was also identified in 4.1% of unselected (26% of unselected triple negative) Tyrolean breast cancer patients and 6.8% of unselected ovarian cancer patients from the Lower Inn Valley (LIV) region. Cancer incidences showed a region-specific increase in age-stratified breast and ovarian cancer risk with standardized incidence ratios of 1.23 and 2.13, respectively. We, thus, report a Tyrolean BRCA1 founder mutation that correlates to a local increase in the breast and ovarian cancer risks. On the basis of its high prevalence, we suggest that targeted genetic analysis should be offered to all women with breast or ovarian cancer and ancestry from the LIV region.


Asunto(s)
Proteína BRCA1/genética , Neoplasias de la Mama/genética , Pruebas Genéticas , Neoplasias Ováricas/genética , Adulto , Anciano , Anciano de 80 o más Años , Proteína BRCA2/genética , Neoplasias de la Mama/patología , Codón de Terminación/genética , Femenino , Efecto Fundador , Humanos , Persona de Mediana Edad , Mutación , Neoplasias Ováricas/patología
14.
Amino Acids ; 47(11): 2367-76, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26081982

RESUMEN

Carnosinase 1 (CN1) contributes to diabetic nephropathy by cleaving histidine-dipeptides which scavenge reactive oxygen and carbonyl species and increase nitric oxide (NO) production. In diabetic mice renal CN1 activity is increased, the regulatory mechanisms are unknown. We therefore analysed the in vitro and in vivo regulation of CN1 activity using recombinant and human CN1, and the db/db mouse model of diabetes. Glucose, leptin and insulin did not modify recombinant and human CN1 activity in vitro, glucose did not alter renal CN1 activity of WT or db/db mice ex vivo. Reactive metabolite methylglyoxal and Fenton reagent carbonylated recombinant CN1 and doubled CN1 efficiency. NO S-nitrosylated CN1 and decreased CN1 efficiency for carnosine by 70 % (p < 0.01), but not for anserine. Both CN1 cysteine residues were nitrosylated, the cysteine at position 102 but not at position 229 regulated CN1 activities. In db/db mice, renal CN1 mRNA and protein levels were similar as in non-diabetic controls, CN1 efficiency 1.9 and 1.6 fold higher for carnosine and anserine. Renal carbonyl stress was strongly increased and NO production halved, CN1 highly carbonylated and less S-nitrosylated compared to WT mice. GSH and NO2/3 concentrations were reduced and inversely related with carnosine degradation rate (r = -0.82/-0.85). Thus, reactive metabolites of diabetes upregulate CN1 activity by post-translational modifications, and thus decrease the availability of reactive metabolite-scavenging histidine dipeptides in the kidney in a positive feedback loop. Interference with this vicious circle may represent a new therapeutic target for mitigation of DN.


Asunto(s)
Carnosina/metabolismo , Diabetes Mellitus/metabolismo , Óxido Nítrico/metabolismo , Piruvaldehído/metabolismo , Animales , Carnosina/genética , Diabetes Mellitus/genética , Diabetes Mellitus/patología , Dipeptidasas/genética , Dipeptidasas/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Ratones , Ratones Mutantes , Mutación
15.
World J Surg ; 38(8): 2160-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24682311

RESUMEN

BACKGROUND: Lipocalin-2 (Lcn-2) is expressed in human neutrophils and epithelial cells, particularly in the presence of inflammation or cancer. It was shown to be highly expressed in various human cancers. Increased protein levels were associated with decreased survival of patients with breast or gastric cancer. The main focus of this work was to analyze the implication of Lcn-2 up-regulation in the genesis of colon cancer. METHODS: Expression of Lcn-2 was analyzed in colorectal carcinoma cell lines, paired colorectal carcinoma tissues, and regular mucosa by Western blot analysis. Lcn-2 immunohistochemical staining was performed in 192 colorectal carcinoma resection specimens and correlated with clinicopathologic parameters. RESULTS: Western blot analysis of colorectal carcinoma tissues demonstrated Lcn-2 overexpression in carcinomas as compared with regular mucosa. Immunohistochemical staining revealed Lcn-2 expression in 179 (93.2%) colorectal carcinoma tissues. Intense immunoreactivity was significantly correlated with metastasis (p = 0.042) and UICC stage (p = 0.027). Survival analysis according to the Kaplan-Meier method revealed a significant association between Lcn-2 overexpressing tumors and overall survival (p < 0.001) and disease-free survival (p < 0.001). CONCLUSIONS: Our data provide evidence that Lcn-2 expression is up-regulated with tumor progression and was found to be a predictor of overall survival.


Asunto(s)
Proteínas de Fase Aguda/análisis , Carcinoma/química , Neoplasias Colorrectales/química , Lipocalinas/análisis , Proteínas Proto-Oncogénicas/análisis , Proteínas de Fase Aguda/metabolismo , Anciano , Carcinoma/mortalidad , Carcinoma/secundario , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Supervivencia sin Enfermedad , Femenino , Células HT29 , Humanos , Mucosa Intestinal/química , Estimación de Kaplan-Meier , Lipocalina 2 , Lipocalinas/metabolismo , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas Proto-Oncogénicas/metabolismo , Tasa de Supervivencia , Regulación hacia Arriba
16.
Hum Mol Genet ; 23(13): 3618-28, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24549042

RESUMEN

17ß-Hydroxysteroid dehydrogenase type 10 (HSD10) is multifunctional protein coded by the X-chromosomal HSD17B10 gene. Mutations in this gene cause HSD10 disease characterized by progressive neurological abnormalities and cardiomyopathy. Disease progression and severity of symptoms is unrelated to the protein's dehydrogenase activity. Recently, it was shown that HSD10 is an essential component of mitochondrial Ribonuclease P (RNase P), an enzyme required for mitochondrial tRNA processing, but little is known about the role of HSD10 in RNase P function. RNase P consists of three different proteins MRPP1, MRPP2 (HSD10) and MRPP3, each of which is essential for RNase P function. Here, we show that HSD10 protein levels are significantly reduced in fibroblasts from patients carrying the HSD17B10 mutation p.R130C. A reduction in HSD10 levels was accompanied by a reduction in MRPP1 protein but not MRPP3 protein. In HSD10 knock-down cells, MRPP1 protein content was also reduced, indicating that HSD10 is important for the maintenance of normal MRPP1 protein levels. Ectopic expression of HSD10 partially restored RNA processing in HSD10 knock-down cells and fibroblasts, and also expression of MRPP1 protein was restored to values comparable to controls. In both, patient fibroblasts and HSD10 knock-down cells, there was evidence of impaired processing of precursor tRNA transcripts of the mitochondrial heavy strand but not the light strand compared with controls. Our findings indicate that HSD10 is important for the maintenance of the MRPP1-HSD10 subcomplex of RNase P and that loss of HSD10 causes impaired mitochondrial precursor transcript processing which may explain mitochondrial dysfunction observed in HSD10 disease.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Metiltransferasas/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Metiltransferasas/genética , Mutación , ARN de Transferencia/genética , Ribonucleasa P/genética , Ribonucleasa P/metabolismo
17.
Eur J Med Genet ; 56(7): 383-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23608969

RESUMEN

De novo combined duplications/inversions are very rare chromosomal rearrangements. For chromosome 7 just some dozen cases of duplications of various parts of the long arm have been published. We report on a 12-year-old boy with muscular hypotonia, global developmental delay, short stature, and various facial dysmorphism including frontal bossing, temporal narrowing, slightly down-slanting palpebral fissures, a broad nasal root, a long philtrum, a thin and tented upper lip, a drooping lower lip, micrognathia, prominent ears, a short neck, and a low posterior hairline. Karyotype analysis and molecular investigations revealed a complex de novo chromosomal rearrangement on 7q. FISH analysis with locus specific YACs and BACs and SNP array with the Illumina(®) HumanOmni1-Quad v1.0 BeadChip disclosed a direct duplication in the long arm of chromosome 7 (q22.1→q32.2) and an inversion located at the breakpoint between the two copies of the duplication (q31.31→q31.33). In addition, breakpoint characterization at the molecular level revealed a 386 bp insertion carrying two Alu elements of chromosome 19p13.2 between the two copies of the duplication. By a comparison of the SNP haplotypes of the derivative chromosome of the patient and both parents a two-step formation during spermatogenesis was suggested as the most likely mechanism of formation.


Asunto(s)
Anomalías Múltiples/genética , Aberraciones Cromosómicas , Cromosomas Humanos Par 19/genética , Cromosomas Humanos Par 7/genética , Discapacidades del Desarrollo/genética , Anomalías Múltiples/diagnóstico , Elementos Alu , Niño , Puntos de Rotura del Cromosoma , Discapacidades del Desarrollo/diagnóstico , Haplotipos , Humanos , Masculino , Polimorfismo de Nucleótido Simple
18.
Am J Hum Genet ; 90(4): 701-7, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22424600

RESUMEN

Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of autozygosity mapping and exome sequencing, we identified a homozygous frameshift deletion, c.229_230del (p.Leu77Alafs(∗)64), in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two additional KTS-affected individuals from two unrelated Austrian and Swiss families revealed homozygosity for nonsense mutation c.286C>T (p.Gln96(∗)) and compound heterozygosity for the splice-site mutations c.531+5G>C and c.532-2A>T in ROGDI, respectively. The latter mutation was also found to be heterozygous in the mother of the Swiss affected individual in whom KTS was reported for the first time in 1974. ROGDI is highly expressed throughout the brain and other organs, but its function is largely unknown. Possible interactions with DISC1, a protein involved in diverse cytoskeletal functions, have been suggested. Our finding that ROGDI mutations cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis.


Asunto(s)
Amelogénesis Imperfecta/genética , Demencia/genética , Epilepsia/genética , Proteínas de la Membrana/genética , Mutación , Proteínas Nucleares/genética , Secuencia de Bases , Mapeo Cromosómico , Exoma , Exones , Femenino , Heterocigoto , Homocigoto , Humanos , Lactante , Masculino , Datos de Secuencia Molecular
19.
Am J Hum Genet ; 90(2): 201-16, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22265013

RESUMEN

We report on an autosomal-recessive variant of Ehlers-Danlos syndrome (EDS) characterized by severe muscle hypotonia at birth, progressive scoliosis, joint hypermobility, hyperelastic skin, myopathy, sensorineural hearing impairment, and normal pyridinoline excretion in urine. Clinically, the disorder shares many features with the kyphoscoliotic type of EDS (EDS VIA) and Ullrich congenital muscular dystrophy. Linkage analysis in a large Tyrolean kindred identified a homozygous frameshift mutation in FKBP14 in two affected individuals. Based on the cardinal clinical characteristics of the disorder, four additional individuals originating from different European countries were identified who carried either homozygous or compound heterozygous mutations in FKBP14. FKBP14 belongs to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases). ER-resident FKBPs have been suggested to act as folding catalysts by accelerating cis-trans isomerization of peptidyl-prolyl bonds and to act occasionally also as chaperones. We demonstrate that FKBP14 is localized in the endoplasmic reticulum (ER) and that deficiency of FKBP14 leads to enlarged ER cisterns in dermal fibroblasts in vivo. Furthermore, indirect immunofluorescence of FKBP14-deficient fibroblasts indicated an altered assembly of the extracellular matrix in vitro. These findings suggest that a disturbance of protein folding in the ER affecting one or more components of the extracellular matrix might cause the generalized connective tissue involvement in this disorder. FKBP14 mutation analysis should be considered in all individuals with apparent kyphoscoliotic type of EDS and normal urinary pyridinoline excretion, in particular in conjunction with sensorineural hearing impairment.


Asunto(s)
Anomalías Múltiples/genética , Síndrome de Ehlers-Danlos/genética , Mutación del Sistema de Lectura , Pérdida Auditiva/genética , Isomerasa de Peptidilprolil/genética , Adolescente , Aminoácidos/orina , Niño , Preescolar , Síndrome de Ehlers-Danlos/orina , Retículo Endoplásmico/genética , Matriz Extracelular/genética , Femenino , Fibroblastos/metabolismo , Variación Genética , Pérdida Auditiva/orina , Heterocigoto , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Pliegue de Proteína , cis-trans-Isomerasas/genética
20.
Oral Oncol ; 47(5): 352-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21440489

RESUMEN

Indoleamine 2,3 dioxygenase (IDO) is a negative immune regulator and was found to be a prognostic marker in several tumor entities. In this study, we analysed IDO expression in oral squamous cell carcinoma (OSCC) regarding patient's prognosis. Additionally, expression of IDO like-1 gene (INDOL-1) was analysed. Tumor tissue from 88 patients with OSCC was analysed by immunohistochemistry for IDO expression. The influence of IDO expression on survival was studied by multivariate Cox regression, adjusting for established clinical prognostic parameters. Real time PCR of tumor samples was performed in a subgroup of patients to analyse mRNA expression of IDO and INDOL-1. IDO high-expression was observed in 44.2% of OSCC patients. No significant correlation was found between IDO expression and clinical stage, sex, age, tumor site, tumor size, metastasis or tumor grade. The median overall survival time was 3.1 years for patients with IDO low tumors, compared to 1.36 years for IDO high tumors (P=.028). Subset analysis of patients receiving adjuvant radio-chemotherapy showed a significant difference (P=.0046) in overall survival between IDO low tumors (3.35 years) and IDO high tumors (1.26 years). In contrast, the impact of IDO expression on survival time in patients without adjuvant therapy was not significant (P=.574). Interestingly, INDOL-1 was not expressed in OSCC. IDO high expression represents a significant negative prognostic factor in patients with OSCC, especially in those patients undergoing adjuvant radiochemotherapy. Our data support the suggestion, co-administration of small-molecule IDO inhibitors could represent a promising new strategy to increase the anti-tumor activity of radio-chemotherapy in patients with IDO positive OSCC.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Neoplasias de la Boca/metabolismo , Proteínas de Neoplasias/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Femenino , Regulación de la Expresión Génica/genética , Humanos , Inmunohistoquímica , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/mortalidad , Neoplasias de la Boca/patología , Pronóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...