Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(15): e2305326, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342616

RESUMEN

Botulinum neurotoxin serotype A (BoNT/A) is widely used in therapeutics and cosmetics. The effects of multi-dosed BoNT/A treatment are well documented on the peripheral nervous system (PNS), but much less is known on the central nervous system (CNS). Here, the mechanism of multi-dosed BoNT/A leading to CNS neurodegeneration is explored by using the 3D human neuron-glia model. BoNT/A treatment reduces acetylcholine, triggers astrocytic transforming growth factor beta, and upregulates C1q, C3, and C5 expression, inducing microglial proinflammation. The disintegration of the neuronal microtubules is escorted by microglial nitric oxide, interleukin 1ß, tumor necrosis factor α, and interleukin 8. The microglial proinflammation eventually causes synaptic impairment, phosphorylated tau (pTau) aggregation, and the loss of the BoNT/A-treated neurons. Taking a more holistic approach, the model will allow to assess therapeutics for the CNS neurodegeneration under the prolonged use of BoNT/A.


Asunto(s)
Microglía , Neuronas , Humanos , Microglía/metabolismo , Astrocitos
2.
Nat Protoc ; 18(9): 2838-2867, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37542184

RESUMEN

Neuroinflammation has either beneficial or detrimental effects, depending on risk factors and neuron-glia interactions in neurological disorders. However, studying neuroinflammation has been challenging due to the complexity of cell-cell interactions and lack of physio-pathologically relevant neuroinflammatory models. Here, we describe our three-dimensional microfluidic multicellular human neural culture model, referred to as a 'brain-on-a-chip' (BoC). This elucidates neuron-glia interactions in a controlled manner and recapitulates pathological signatures of the major neurological disorders: dementia, brain tumor and brain edema. This platform includes a chemotaxis module offering a week-long, stable chemo-gradient compared with the few hours in other chemotaxis models. Additionally, compared with conventional brain models cultured with mixed phenotypes of microglia, our BoC can separate the disease-associated microglia out of heterogeneous population and allow selective neuro-glial engagement in three dimensions. This provides benefits of interpreting the neuro-glia interactions while revealing that the prominent activation of innate immune cells is the risk factor leading to synaptic impairment and neuronal loss, validated in our BoC models of disorders. This protocol describes how to fabricate and implement our human BoC, manipulate in real time and perform end-point analyses. It takes 2 d to set up the device and cell preparations, 1-9 weeks to develop brain models under disease conditions and 2-3 d to carry out analyses. This protocol requires at least 1 month training for researchers with basic molecular biology techniques. Taken together, our human BoCs serve as reliable and valuable platforms to investigate pathological mechanisms involving neuroinflammation and to assess therapeutic strategies modulating neuroinflammation in neurological disorders.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Humanos , Dispositivos Laboratorio en un Chip , Enfermedades Neuroinflamatorias/patología , Técnicas de Cultivo de Célula , Enfermedades Neurodegenerativas/patología
3.
Crit Rev Microbiol ; 49(1): 1-17, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35212259

RESUMEN

The study on botulinum neurotoxins (BoNTs) has rapidly evolved for their structure and functions as opposed to them being poisons or cures. Since their discoveries, the scientific community has come a long way in understanding BoNTs' structure and biological activity. Given its current application as a tool for understanding neurocellular activity and as a drug against over 800 neurological disorders, relevant and sensitive assays have become critical for biochemical, physiological, and pharmacological studies. The natural entry of the toxin being ingestion, it has also become important to examine its mechanism while crossing the epithelial cell barrier. Several techniques and methodologies have been developed, for its entry, pharmacokinetics, and biological activity for identification, and drug efficacy both in vivo and in vitro conditions. However, each of them presents its own challenges. The cell-based assay is a platform that exceeds the sensitivity of mouse bioassay while encompassing all the steps of intoxication including cell binding, transcytosis, endocytosis, translocation and proteolytic activity. In this article we review in detail both the neuronal and nonneuronal based cellular interaction of BoNT involving its transportation, and interaction with the targeted cells, and intracellular activities.


Asunto(s)
Toxinas Botulínicas , Ratones , Animales , Toxinas Botulínicas/farmacología , Neurotoxinas/química , Neurotoxinas/farmacología , Neuronas , Bioensayo
4.
Toxicon ; 144: 34-41, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29309744

RESUMEN

Botulinum neurotoxins (BoNTs; serotypes A-G) are metalloproteases, which cleave and inactivate cellular proteins essential for neurotransmitter release. In bacterial cultures, BoNTs are secreted as a complex of the neurotoxin and a group of neurotoxin associated proteins (NAPs). Under physiological condition (pH 7.4), this complex is believed to be dissociated to separate the neurotoxin from NAPs. BoNT consists of a 50 kDa light (L) chain (LC or catalytic domain) and a 100 kDa heavy (H) chain (or HC) linked through a disulfide bond and other non-covalent interactions. The cell intoxication involves three major steps; binding, membrane translocation and inhibition of neurotransmitter release. The last step of intoxication, endopeptidase activity, is very unique and specific that can be used for detection of the complex and isolated forms of the toxin. A fluorescent tag-labeled synthetic peptide (SNAPtide) derived from a segment of SNAP-25, an intracellular substrate of BoNT/A, is used to detect and assay the endopeptidase activity of BoNT/A. The detection of the signal is based on the change in the fluorescence energy transfer after selective cleavage of the peptide by the BoNT/A. In this report, we demonstrate that SNAPtide as a commonly used substrate widely differ in reaction with BoNT/A complex, BoNT/A, and BoNT/A light chain. These findings have implications for assays used in detection, and in screening potential inhibitors.


Asunto(s)
Toxinas Botulínicas Tipo A/metabolismo , Endopeptidasas/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Toxinas Botulínicas Tipo A/química , Dominio Catalítico , Clostridium botulinum/enzimología , Disulfuros/metabolismo , Endopeptidasas/química , Transferencia Resonante de Energía de Fluorescencia , Neurotoxinas/química , Neurotoxinas/metabolismo , Dominios Proteicos , Proteína 25 Asociada a Sinaptosomas/química
5.
Protein J ; 36(6): 489-501, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29030733

RESUMEN

Botulinum neurotoxins (BoNTs) are the most toxic proteins known to cause flaccid muscle paralysis as a result of inhibition of neurotransmitter release from peripheral cholinergic synapses. BoNT type A (BoNT/A) is a 150 kDa protein consisting of two major subunits: light chain (LC) and heavy chain (HC). The LC is required for the catalytic activity of neurotoxin, whereas the C and N terminal domains of the HC are required for cell binding, and translocation of LC across the endosome membranes, respectively. To better understand the structural and functional aspects of BoNT/A intoxication we report here the development of high yield Escherichia coli expression system (2-20-fold higher yield than the value reported in the literature) for the production of recombinant light chain-translocation domain (rLC-TD/A) module of BoNT/A which is catalytically active and translocation competent. The open reading frame of rLC-TD/A was PCR amplified from deactivated recombinant BoNT/A gene (a non-select agent reagent), and was cloned using pET45b (+) vector to express in E. coli cells. The purification procedure included a sequential order of affinity chromatography, trypsinization, and anion exchange column chromatography. We were able to purify > 95% pure, catalytically active and structurally well-folded protein. Comparison of enzyme kinetics of purified LC-TD/A to full-length toxin and recombinant light chain A suggest that the affinity for the substrate is in between endopeptidase domain and botulinum toxin. The potential application of the purified protein has been discussed in toxicity and translocation assays.


Asunto(s)
Toxinas Botulínicas Tipo A/aislamiento & purificación , Toxinas Botulínicas Tipo A/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Escherichia coli/genética , Cinética , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA