Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Struct Funct ; 229(3): 741-758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366123

RESUMEN

Gender inequality and diversity in STEM is a challenging field of research. Although the relation between the sex/gender of the researcher and the scientific research practices has been previously examined, less interest has been demonstrated towards the relation between sex/gender of the researcher and the way sex/gender as a variable is explored. Here, we examine, from a neurofeminist perspective, both questions: whether sex/gender identity is related to the examination of sex/gender as a variable and whether different approaches towards examining sex/gender are being used in different topics of study within neuroscience. Using the database of submitted posters to the Organization of Human Brain Mapping 2022 annual conference, we identified abstracts examining a sex/gender-related research question. Among these target abstracts, we identified four analytical categories, varying in their degree of content-related complexity: (1) sex/gender as a covariate, (2) sex/gender as a binary variable for the study of sex/gender differences, (3) sex/gender with additional biological information, and (4) sex/gender with additional social information. Statistical comparisons between sex/gender of researcher and the target abstract showed that the proportion of abstracts from Non-binary or Other first authors compared to both Women and Men was lower for all submitted abstracts than for the target abstracts; that more researchers with sex/gender-identity other than man implemented analytical category of sex/gender with additional social information; and, for instance, that research involving cognitive, affective, and behavioural neuroscience more frequently fit into the sex/gender with additional social information-category. Word cloud analysis confirmed the validity of the four exploratorily identified analytical categories. We conclude by discussing how raising awareness about contemporary neurofeminist approaches, including perspectives from the global south, is critical to neuroscientific and societal progress.


Asunto(s)
Encéfalo , Identidad de Género , Humanos , Femenino , Masculino , Factores Sexuales , Cabeza
2.
Cells ; 11(6)2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35326421

RESUMEN

The statin drug target, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), is strongly linked to body mass index (BMI), yet how HMGCR influences BMI is not understood. In mammals, studies of peripheral HMGCR have not clearly identified a role in BMI maintenance and, despite considerable central nervous system expression, a function for central HMGCR has not been determined. Similar to mammals, Hmgcr is highly expressed in the Drosophila melanogaster brain. Therefore, genetic and pharmacological studies were performed to identify how central Hmgcr regulates Drosophila energy metabolism and feeding behavior. We found that inhibiting Hmgcr, in insulin-producing cells of the Drosophila pars intercerebralis (PI), the fly hypothalamic equivalent, significantly reduces the expression of insulin-like peptides, severely decreasing insulin signaling. In fact, reducing Hmgcr expression throughout development causes decreased body size, increased lipid storage, hyperglycemia, and hyperphagia. Furthermore, the Hmgcr induced hyperphagia phenotype requires a conserved insulin-regulated α-glucosidase, target of brain insulin (tobi). In rats and mice, acute inhibition of hypothalamic Hmgcr activity stimulates food intake. This study presents evidence of how central Hmgcr regulation of metabolism and food intake could influence BMI.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Drosophila melanogaster/metabolismo , Ingestión de Alimentos , Metabolismo Energético , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hiperfagia , Insulina/metabolismo , Mamíferos/metabolismo , Ratones , Ratas
3.
PLoS Genet ; 12(6): e1006104, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27280443

RESUMEN

Several reports suggest obesity and bipolar disorder (BD) share some physiological and behavioural similarities. For instance, obese individuals are more impulsive and have heightened reward responsiveness, phenotypes associated with BD, while bipolar patients become obese at a higher rate and earlier age than people without BD; however, the molecular mechanisms of such an association remain obscure. Here we demonstrate, using whole transcriptome analysis, that Drosophila Ets96B, homologue of obesity-linked gene ETV5, regulates cellular systems associated with obesity and BD. Consistent with a role in obesity and BD, loss of nervous system Ets96B during development increases triacylglyceride concentration, while inducing a heightened startle-response, as well as increasing hyperactivity and reducing sleep. Of notable interest, mouse Etv5 and Drosophila Ets96B are expressed in dopaminergic-rich regions, and loss of Ets96B specifically in dopaminergic neurons recapitulates the metabolic and behavioural phenotypes. Moreover, our data indicate Ets96B inhibits dopaminergic-specific neuroprotective systems. Additionally, we reveal that multiple SNPs in human ETV5 link to body mass index (BMI) and BD, providing further evidence for ETV5 as an important and novel molecular intermediate between obesity and BD. We identify a novel molecular link between obesity and bipolar disorder. The Drosophila ETV5 homologue Ets96B regulates the expression of cellular systems with links to obesity and behaviour, including the expression of a conserved endoplasmic reticulum molecular chaperone complex known to be neuroprotective. Finally, a connection between the obesity-linked gene ETV5 and bipolar disorder emphasizes a functional relationship between obesity and BD at the molecular level.


Asunto(s)
Trastorno Bipolar/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Obesidad/genética , Factores de Transcripción/fisiología , Animales , Índice de Masa Corporal , Cromatina/metabolismo , Cruzamientos Genéticos , ADN Complementario/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Biblioteca de Genes , Silenciador del Gen , Humanos , Masculino , Oxidación-Reducción , Fosforilación Oxidativa , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple , Interferencia de ARN , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA