Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Protoc ; 4(1): e979, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38265186

RESUMEN

Human disease modeling has been profoundly transformed by the introduction of human induced pluripotent stem cells (iPSCs), marking the onset of a new era. This ground-breaking development offers a tailored framework for generating pluripotent cells from any individual, effectively enabling the development of cellular models for the study of human physiology and diseases on an unprecedented scale. Although technologies for iPSCs generation have advanced rapidly over the past two decades, protocols for reprogramming patient-derived somatic cells into stem cells still pose a major challenge for the development of automated pipelines capable of generating iPSCs at scales that are cost-effective, reproducible, and easy to implement. Most methods commonly rely on extracellular matrix protein mixtures or synthetic substrates to promote efficient proliferation of iPSCs. Nonetheless, employing these substances entails a laborious and time-consuming process, as the culture surface requires coating treatments before cell seeding. Here we describe a method for reprogramming blood-derived mononucleated cells that eliminates the need to precoat culture surfaces for the entire experimental flow. This procedure is suitable for fresh or frozen purified peripheral blood mononuclear cells (PBMCs) and allows seeding of reprogrammed cells in a culture medium containing a fragment of laminin-511, regardless of the method of reprogramming employed. Our protocol incorporates a streamlined workflow that optimizes key factors, including cell density, culture medium composition, and iPSC culture propagation techniques. Using a precoating-free approach, we eliminate the time-consuming steps, while our optimized subcloning method improves the scalability of the protocol, making it suitable for large-scale applications. Additionally, the automation-friendly nature of our protocol allows for high-throughput processing, reducing the labor and costs associated with manual handling. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Miniaturized and time efficient precoating-free reprogramming of fresh or frozen PBMCs Alternate Protocol: Erythroid progenitor cells (EPCs) enrichment and reprogramming into iPSCs using Sendai viral vectors Basic Protocol 2: Picking and precoating-free optimized expansion of iPSC clones.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Leucocitos Mononucleares , Automatización , Células Clonales , Medios de Cultivo
2.
Cancer Res ; 83(16): 2733-2749, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37289021

RESUMEN

Neuroblastoma (NB) is an aggressive childhood tumor, with high-risk cases having a 5-year overall survival probability of approximately 50%. The multimodal therapeutic approach for NB includes treatment with the retinoid isotretinoin (13-cis retinoic acid; 13cRA), which is used in the post-consolidation phase as an antiproliferation and prodifferentiation agent to minimize residual disease and prevent relapse. Through small-molecule screening, we identified isorhamnetin (ISR) as a synergistic compound with 13cRA in inhibiting up to 80% of NB cell viability. The synergistic effect was accompanied by a marked increase in the expression of the adrenergic receptor α1B (ADRA1B) gene. Genetic knockout of ADRA1B or its specific blockade using α1/α1B adrenergic antagonists led to selective sensitization of MYCN-amplified NB cells to cell viability reduction and neural differentiation induced by 13cRA, thus mimicking ISR activity. Administration of doxazosin, a safe α1-antagonist used in pediatric patients, in combination with 13cRA in NB xenografted mice exerted marked control of tumor growth, whereas each drug alone was ineffective. Overall, this study identified the α1B adrenergic receptor as a pharmacologic target in NB, supporting the evaluation of adding α1-antagonists to the post-consolidation therapy of NB to more efficiently control residual disease. SIGNIFICANCE: Targeting α-adrenergic receptors synergizes with isotretinoin to suppress growth and to promote differentiation of neuroblastoma, revealing a combinatorial approach for more effective management of the disease and prevention of relapse.


Asunto(s)
Isotretinoína , Neuroblastoma , Humanos , Ratones , Niño , Animales , Isotretinoína/farmacología , Isotretinoína/uso terapéutico , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapéutico , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Diferenciación Celular , Receptores Adrenérgicos/uso terapéutico , Recurrencia , Proteína Proto-Oncogénica N-Myc
3.
Nucleic Acids Res ; 50(18): 10756-10771, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36165847

RESUMEN

A variety of single-gene human diseases are caused by haploinsufficiency, a genetic condition by which mutational inactivation of one allele leads to reduced protein levels and functional impairment. Translational enhancement of the spare allele could exert a therapeutic effect. Here we developed BOOST, a novel gene-editing approach to rescue haploinsufficiency loci by the change of specific single nucleotides in the Kozak sequence, which controls translation by regulating start codon recognition. We evaluated for translational strength 230 Kozak sequences of annotated human haploinsufficient genes and 4621 derived variants, which can be installed by base editing, by a high-throughput reporter assay. Of these variants, 149 increased the translation of 47 Kozak sequences, demonstrating that a substantial proportion of haploinsufficient genes are controlled by suboptimal Kozak sequences. Validation of 18 variants for 8 genes produced an average enhancement in an expression window compatible with the rescue of the genetic imbalance. Base editing of the NCF1 gene, whose monoallelic loss causes chronic granulomatous disease, resulted in the desired increase of NCF1 (p47phox) protein levels in a relevant cell model. We propose BOOST as a fine-tuned approach to modulate translation, applicable to the correction of dozens of haploinsufficient monogenic disorders independently of the causing mutation.


Asunto(s)
Haploinsuficiencia , Nucleótidos , Alelos , Codón Iniciador , Haploinsuficiencia/genética , Humanos , ARN Mensajero/metabolismo
4.
Prog Mol Biol Transl Sci ; 182: 439-476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34175050

RESUMEN

Translational control plays a fundamental role in the regulation of gene expression in eukaryotes. Modulating translational efficiency allows the cell to fine-tune the expression of genes, spatially control protein localization, and trigger fast responses to environmental stresses. Translational regulation involves mechanisms acting on multiple steps of the protein synthesis pathway: initiation, elongation, and termination. Many cis-acting elements present in the 5' UTR of transcripts can influence translation at the initiation step. Among them, the Kozak sequence impacts translational efficiency by regulating the recognition of the start codon; upstream open reading frames (uORFs) are associated with inhibition of translation of the downstream protein; internal ribosomal entry sites (IRESs) can promote cap-independent translation. CRISPR-Cas technology is a revolutionary gene-editing tool that has also been applied to the regulation of gene expression. In this chapter, we focus on the genome editing approaches developed to modulate the translational efficiency with the aim to find novel therapeutic approaches, in particular acting on the cis-elements, that regulate the initiation of protein synthesis.


Asunto(s)
Edición Génica , Terapia Genética , Regiones no Traducidas 5' , Sistemas de Lectura Abierta , Biosíntesis de Proteínas/genética
5.
Cell Rep ; 35(4): 109024, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33910005

RESUMEN

Glioblastoma stem cells (GSCs) resist current glioblastoma (GBM) therapies. GSCs rely highly on oxidative phosphorylation (OXPHOS), whose function requires mitochondrial translation. Here we explore the therapeutic potential of targeting mitochondrial translation and report the results of high-content screening with putative blockers of mitochondrial ribosomes. We identify the bacterial antibiotic quinupristin/dalfopristin (Q/D) as an effective suppressor of GSC growth. Q/D also decreases the clonogenicity of GSCs in vitro, consequently dysregulating the cell cycle and inducing apoptosis. Cryoelectron microscopy (cryo-EM) reveals that Q/D binds to the large mitoribosomal subunit, inhibiting mitochondrial protein synthesis and functionally dysregulating OXPHOS complexes. These data suggest that targeting mitochondrial translation could be explored to therapeutically suppress GSC growth in GBM and that Q/D could potentially be repurposed for cancer treatment.


Asunto(s)
Glioblastoma/genética , Mitocondrias/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos
6.
Biochim Biophys Acta Biomembr ; 1859(10): 1796-1804, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28583831

RESUMEN

SET-M33 is a multimeric antimicrobial peptide active against Gram-negative bacteria in vitro and in vivo. Insights into its killing mechanism could elucidate correlations with selectivity. SET-M33 showed concentration-dependent bactericidal activity against colistin-susceptible and resistant isolates of P. aeruginosa and K. pneumoniae. Scanning and transmission microscopy studies showed that SET-M33 generated cell blisters, blebs, membrane stacks and deep craters in K. pneumoniae and P. aeruginosa cells. NMR analysis and CD spectra in the presence of sodium dodecyl sulfate micelles showed a transition from an unstructured state to a stable α-helix, driving the peptide to arrange itself on the surface of micelles. SET-M33 kills Gram-negative bacteria after an initial interaction with bacterial LPS. The molecule becomes then embedded in the outer membrane surface, thereby impairing cell function. This activity of SET-M33, in contrast to other similar antimicrobial peptides such as colistin, does not generate resistant mutants after 24h of exposure, non-specific interactions or toxicity against eukaryotic cell membranes, suggesting that SET-M33 is a promising new option for the treatment of Gram-negative antibiotic-resistant infections.


Asunto(s)
Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Antiinfecciosos/química , Lipopolisacáridos/metabolismo , Micelas , Pruebas de Sensibilidad Microbiana/métodos , Conformación Proteica en Hélice alfa , Dodecil Sulfato de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...