Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1267641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283348

RESUMEN

Introduction: Chagas disease causes a cardiac illness characterized by immunoinflammatory reactions leading to myocardial fibrosis and remodeling. The development of Chronic Chagas Cardiomyopathy (CCC) in some patients while others remain asymptomatic is not fully understood, but dysregulated inflammatory responses are implicated. The Aryl hydrocarbon receptor (AhR) plays a crucial role in regulating inflammation. Certain tryptophan (Trp) metabolites have been identified as AhR ligands with regulatory functions. Methods results and discussion: We investigated AhR expression, agonist response, ligand production, and AhR-dependent responses, such as IDO activation and regulatory T (Treg) cells induction, in two T. cruzi-infected mouse strains (B6 and Balb/c) showing different polymorphisms in AhR. Furthermore, we assessed the metabolic profile of Trp catabolites and AhR agonistic activity levels in plasma samples from patients with chronic Chagas disease (CCD) and healthy donors (HD) using a luciferase reporter assay and liquid chromatography-mass spectrophotometry (LC-MS) analysis. T. cruzi-infected B6 mice showed impaired AhR-dependent responses compared to Balb/c mice, including reduced IDO activity, kynurenine levels, Treg cell induction, CYP1A1 up-regulation, and AhR expression following agonist activation. Additionally, B6 mice exhibited no detectable AhR agonist activity in plasma and displayed lower CYP1A1 up-regulation and AhR expression upon agonist activation. Similarly, CCC patients had decreased AhR agonistic activity in plasma compared to HD patients and exhibited dysregulation in Trp metabolic pathways, resulting in altered plasma metabolite profiles. Notably, patients with severe CCC specifically showed increased N-acetylserotonin levels in their plasma. The methods and findings presented here contribute to a better understanding of CCC development mechanisms and may identify potential specific biomarkers for T. cruzi infection and the severity of associated heart disease. These insights could be valuable in designing new therapeutic strategies. Ultimately, this research aims to establish the AhR agonistic activity and Trp metabolic profile in plasma as an innovative, non-invasive predictor of prognosis for chronic Chagas disease.


Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , Animales , Humanos , Ratones , Enfermedad de Chagas/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Receptores de Hidrocarburo de Aril/agonistas , Triptófano/metabolismo
2.
ACS Infect Dis ; 7(3): 566-578, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33573383

RESUMEN

Chagas cardiomyopathy is the consequence of a compromised electrical and mechanical cardiac function, with parasite persistence, unbalanced inflammation, and pathological tissue remodelling, being intricately related to myocardial aggression and impaired function. Recent studies have shown that Wnt signaling pathways play a critical role in the pathogenesis of cardiac and vascular diseases. In addition, we have reported that Trypanosoma cruzi infection activates Wnt signaling to promote intracellular replication of the parasites in macrophages, with the treatment of mice with IWP-L6 (an inhibitor of the O-acyl-transferase, PORCN, responsible for the post-translational modifications necessary for Wnt protein secretion) being able to diminish parasitemia and tissue parasitism. Here, we show that inhibition of Wnt signaling during the acute phase of T. cruzi infection controls the parasite replication, inhibits the development of parasite-prone and fibrosis-prone Th2-type immune response, and prevents the development of cardiac abnormalities characteristics of chronic Chagas disease. Our results suggest that the Wnt signaling pathway might be a potential target to prevent the development of T. cruzi-induced cardiomyopathy.


Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , Trypanosoma cruzi , Aciltransferasas , Animales , Inmunidad , Proteínas de la Membrana , Ratones , Vía de Señalización Wnt
3.
Front Immunol ; 10: 631, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984194

RESUMEN

Resistance to Trypanosoma cruzi infection is dependent on a rapid induction of Th1-type and CD8+ T cell responses that should be promptly balanced to prevent immunopathology. T. cruzi-infected B6 mice are able to control parasite replication but show a limited expansion of Foxp3+regulatory T (Treg) cells that results in the accumulation of effector immune cells and the development of acute liver pathology. AhR is a ligand-activated transcription factor that promotes Treg cell development and suppression of pro-inflammatory cytokine production in dendritic cells, altering the course of adaptive immune response and the development of immunopathology. Here, we used different AhR-dependent activation strategies aiming to improve the Treg response, and B6 congenic mice carrying a mutant AhR variant with low affinity for its ligands (AhRd) to evaluate the role of AhR activation by natural ligands during experimental T. cruzi infection. The outcome of TCDD or 3-HK plus ITE treatments indicated that strong or weak AhR activation before or during T. cruzi infection was effective to regulate inflammation improving the Treg cell response and regularizing the ratio between CD4+ CD25- to Treg cells. However, AhR activation shifted the host-parasite balance to the parasite replication. Weak AhR activation resulted in Treg promotion while strong activation differentially modulated the susceptibility and resistance of cell death in activated T and Treg cells and the increase in TGF-ß-producing Treg cells. Of note, T. cruzi-infected AhRd mice showed low levels of Treg cells associated with strong Th1-type response, low parasite burden and absence of liver pathology. These mice developed a Treg- and Tr1-independent mechanism of Th1 constriction showing increased levels of systemic IL-10 and IL-10-secreting CD4+ splenocytes. In addition, AhR activation induced by exogenous ligands had negative effects on the development of memory CD8+ T cell subsets while the lack/very weak activation in AhRd mice showed opposite results, suggesting that AhR ligation restricts the differentiation of memory CD8+T cell subsets. We propose a model in which a threshold of AhR activation exists and may explain how activation or inhibition of AhR-derived signals by infection/inflammation-induced ligands, therapeutic interventions or exposure to pollutants can modulate infections/diseases outcomes or vaccination efficacy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Enfermedad de Chagas/inmunología , Modelos Inmunológicos , Receptores de Hidrocarburo de Aril/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Trypanosoma cruzi/inmunología , Animales , Linfocitos T CD8-positivos/patología , Enfermedad de Chagas/patología , Memoria Inmunológica , Interleucina-10/inmunología , Hígado/inmunología , Hígado/parasitología , Hígado/patología , Ratones , Linfocitos T Reguladores/patología , Células TH1/patología , Factor de Crecimiento Transformador beta/inmunología
4.
Front Immunol ; 9: 664, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670630

RESUMEN

The survival of helminths in the host over long periods of time is the result of a process of adaptation or dynamic co-evolution between the host and the parasite. However, infection with helminth parasites causes damage to the host tissues producing the release of danger signals that induce the recruitment of various cells, including innate immune cells such as macrophages (Mo), dendritic cells (DCs), eosinophils, basophils, and mast cells. In this scenario, these cells are able to secrete soluble factors, which orchestrate immune effector mechanisms that depend on the different niches these parasites inhabit. Here, we focus on recent advances in the knowledge of excretory-secretory products (ESP), resulting from helminth recognition by DCs and Mo. Phagocytes and other cells types such as innate lymphocyte T cells 2 (ILC2), when activated by ESP, participate in an intricate cytokine network to generate innate and adaptive Th2 responses. In this review, we also discuss the mechanisms of innate immune cell-induced parasite killing and the tissue repair necessary to assure helminth survival over long periods of time.


Asunto(s)
Células Dendríticas/inmunología , Helmintiasis/inmunología , Helmintos/fisiología , Inmunidad Innata , Macrófagos/inmunología , Fagocitos/inmunología , Células Th2/inmunología , Animales , Interacciones Huésped-Parásitos , Humanos , Inmunomodulación , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología
5.
Semin Immunopathol ; 39(2): 199-213, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27587063

RESUMEN

The effective defense against parasite infections requires the ability to mount an appropriate and controlled specific immune response able to eradicate the invading pathogen while limiting the collateral damage to self-tissues. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. Ligation of dendritic cell pattern recognition receptors by pathogen-associated molecular pattern present in the parasites initiates signaling pathways that lead to the production of surface and secreted proteins that are required, together with the antigen, to induce an appropriate and timely regulated immune response. There is evidence showing that parasites can influence and regulate dendritic cell functions in order to promote a more permissive environment for their survival. In this review, we will focus on new insights about the ability of protozoan and helminth parasites or their products to modify dendritic cell function and discuss how this interaction is crucial in shaping the host response.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Interacciones Huésped-Parásitos/inmunología , Parásitos/inmunología , Enfermedades Parasitarias/inmunología , Enfermedades Parasitarias/metabolismo , Animales , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Tolerancia Inmunológica , Quinasas Janus/metabolismo , Enfermedades Parasitarias/parasitología , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...