Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
NAR Genom Bioinform ; 5(4): lqad100, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37954575

RESUMEN

Mitochondrial DNA (mtDNA) can be subject to internal and environmental stressors that lead to oxidatively generated damage and the formation of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG). The accumulation of 8-oxodG has been linked to degenerative diseases and aging, as well as cancer. Despite the well-described implications of 8-oxodG in mtDNA for mitochondrial function, there have been no reports of mapping of 8-oxodG across the mitochondrial genome. To address this, we used OxiDIP-Seq and mapped 8-oxodG levels in the mitochondrial genome of human MCF10A cells. Our findings indicated that, under steady-state conditions, 8-oxodG is non-uniformly distributed along the mitochondrial genome, and that the longer non-coding region appeared to be more protected from 8-oxodG accumulation compared with the coding region. However, when the cells have been exposed to oxidative stress, 8-oxodG preferentially accumulated in the coding region which is highly transcribed as H1 transcript. Our data suggest that 8-oxodG accumulation in the mitochondrial genome is positively associated with mitochondrial transcription.

2.
EMBO J ; 42(21): e113928, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37712288

RESUMEN

To fulfill their function, pancreatic beta cells require precise nutrient-sensing mechanisms that control insulin production. Transcription factor EB (TFEB) and its homolog TFE3 have emerged as crucial regulators of the adaptive response of cell metabolism to environmental cues. Here, we show that TFEB and TFE3 regulate beta-cell function and insulin gene expression in response to variations in nutrient availability. We found that nutrient deprivation in beta cells promoted TFEB/TFE3 activation, which resulted in suppression of insulin gene expression. TFEB overexpression was sufficient to inhibit insulin transcription, whereas beta cells depleted of both TFEB and TFE3 failed to suppress insulin gene expression in response to amino acid deprivation. Interestingly, ChIP-seq analysis showed binding of TFEB to super-enhancer regions that regulate insulin transcription. Conditional, beta-cell-specific, Tfeb-overexpressing, and Tfeb/Tfe3 double-KO mice showed severe alteration of insulin transcription, secretion, and glucose tolerance, indicating that TFEB and TFE3 are important physiological mediators of pancreatic function. Our findings reveal a nutrient-controlled transcriptional mechanism that regulates insulin production, thus playing a key role in glucose homeostasis at both cellular and organismal levels.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Insulina , Animales , Ratones , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Expresión Génica , Glucosa , Lisosomas/metabolismo
3.
PLoS Biol ; 21(3): e3002034, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36888606

RESUMEN

The stress-responsive transcription factor EB (TFEB) is a master controller of lysosomal biogenesis and autophagy and plays a major role in several cancer-associated diseases. TFEB is regulated at the posttranslational level by the nutrient-sensitive kinase complex mTORC1. However, little is known about the regulation of TFEB transcription. Here, through integrative genomic approaches, we identify the immediate-early gene EGR1 as a positive transcriptional regulator of TFEB expression in human cells and demonstrate that, in the absence of EGR1, TFEB-mediated transcriptional response to starvation is impaired. Remarkably, both genetic and pharmacological inhibition of EGR1, using the MEK1/2 inhibitor Trametinib, significantly reduced the proliferation of 2D and 3D cultures of cells displaying constitutive activation of TFEB, including those from a patient with Birt-Hogg-Dubé (BHD) syndrome, a TFEB-driven inherited cancer condition. Overall, we uncover an additional layer of TFEB regulation consisting in modulating its transcription via EGR1 and propose that interfering with the EGR1-TFEB axis may represent a therapeutic strategy to counteract constitutive TFEB activation in cancer-associated conditions.


Asunto(s)
Autofagia , Lisosomas , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia/genética , Lisosomas/metabolismo , Proliferación Celular/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768357

RESUMEN

The guanine base in nucleic acids is, among the other bases, the most susceptible to being converted into 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) when exposed to reactive oxygen species. In double-helix DNA, 8-oxodG can pair with adenine; hence, it may cause a G > T (C > A) mutation; it is frequently referred to as a form of DNA damage and promptly corrected by DNA repair mechanisms. Moreover, 8-oxodG has recently been redefined as an epigenetic factor that impacts transcriptional regulatory elements and other epigenetic modifications. It has been proposed that 8-oxodG exerts epigenetic control through interplay with the G-quadruplex (G4), a non-canonical DNA structure, in transcription regulatory regions. In this review, we focused on the epigenetic roles of 8-oxodG and the G4 and explored their interplay at the genomic level.


Asunto(s)
Daño del ADN , Desoxiguanosina , 8-Hidroxi-2'-Desoxicoguanosina , Reparación del ADN , ADN/química
5.
Bio Protoc ; 12(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36505028

RESUMEN

8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is considered to be a premutagenic DNA lesion generated by 2'-deoxyguanosine (dG) oxidation due to reactive oxygen species (ROS). In recent years, the 8-oxodG distribution in human, mouse, and yeast genomes has been underlined using various next-generation sequencing (NGS)-based strategies. The present study reports the OxiDIP-Seq protocol, which combines specific 8-oxodG immuno-precipitation of single-stranded DNA with NGS, and the pipeline analysis that allows the genome-wide 8-oxodG distribution in mammalian cells. The development of this OxiDIP-Seq method increases knowledge on the oxidative DNA damage/repair field, providing a high-resolution map of 8-oxodG in human cells.

6.
Nucleic Acids Res ; 50(6): 3292-3306, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35234932

RESUMEN

8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a major product of the DNA oxidization process, has been proposed to have an epigenetic function in gene regulation and has been associated with genome instability. NGS-based methodologies are contributing to the characterization of the 8-oxodG function in the genome. However, the 8-oxodG epigenetic role at a genomic level and the mechanisms controlling the genomic 8-oxodG accumulation/maintenance have not yet been fully characterized. In this study, we report the identification and characterization of a set of enhancer regions accumulating 8-oxodG in human epithelial cells. We found that these oxidized enhancers are mainly super-enhancers and are associated with bidirectional-transcribed enhancer RNAs and DNA Damage Response activation. Moreover, using ChIA-PET and HiC data, we identified specific CTCF-mediated chromatin loops in which the oxidized enhancer and promoter regions physically associate. Oxidized enhancers and their associated chromatin loops accumulate endogenous double-strand breaks which are in turn repaired by NHEJ pathway through a transcription-dependent mechanism. Our work suggests that 8-oxodG accumulation in enhancers-promoters pairs occurs in a transcription-dependent manner and provides novel mechanistic insights on the intrinsic fragility of chromatin loops containing oxidized enhancers-promoters interactions.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Factor de Unión a CCCTC/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Cromatina/genética , ADN , Inestabilidad Genómica , Humanos , Regiones Promotoras Genéticas , Transcripción Genética
7.
Cancers (Basel) ; 12(7)2020 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635505

RESUMEN

In recent years, a considerable correlation has emerged between autophagy and genome integrity. A range of mechanisms appear to be involved where autophagy participates in preventing genomic instability, as well as in DNA damage response and cell fate decision. These initial findings have attracted particular attention in the context of malignancy; however, the crosstalk between autophagy and DNA damage response is just beginning to be explored and key questions remain that need to be addressed, to move this area of research forward and illuminate the overall consequence of targeting this process in human therapies. Here we present current knowledge on the complex crosstalk between autophagy and genome integrity and discuss its implications for cancer cell survival and response to therapy.

8.
Biochim Biophys Acta Gene Regul Mech ; 1862(5): 535-546, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30951900

RESUMEN

Senescence is a stress-responsive cellular program that leads to cell cycle arrest. In cancer cells, senescence has profound implications for tumor aggressiveness and clinical outcome, but the molecular events that provoke cancer cells to undergo senescence remain unclear. Herein, we provide evidence that the histone demethylase LSD1/KDM1A supports the growth of Glioblastoma tumor cells and its inhibition triggers senescence response. LSD1 is a histone modifier that participates in key aspects of gene transcription as well as in the regulation of methylation dynamics of non-histone proteins. We found that down-regulation of LSD1 inhibits Glioblastoma cell growth, impairs mTOR pathway and cell migration and induces senescence. At mechanistic level, we found that LSD1 regulates HIF-1α protein stability. Pharmacological inhibition or siRNA-mediated silencing of LSD1 expression effectively reduces HIF-1α protein levels, which suffices for the induction of senescence. Our findings elucidate a mechanism whereby LSD1 controls senescence in Glioblastoma tumor cells through the regulation of HIF-1α, and we propose the novel defined LSD1/HIF-1α axis as a new target for the therapy of Glioblastoma tumors.


Asunto(s)
Senescencia Celular , Glioblastoma/enzimología , Histona Demetilasas/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Supervivencia Celular , Inhibidores Enzimáticos/farmacología , Glioblastoma/metabolismo , Glioblastoma/patología , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/metabolismo , Tranilcipromina/farmacología
9.
Autophagy ; 15(2): 187-196, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30208749

RESUMEN

Macroautophagy/autophagy is a physiological mechanism that is essential for the maintenance of cellular homeostasis and stress adaptation. Defective autophagy is associated with many human diseases, including cancer and neurodegenerative disorders. The emerging implication of epigenetic events in the control of the autophagic process opens new avenues of investigation and offers the opportunity to develop novel therapeutic strategies in diseases associated with dysfunctional autophagy-lysosomal pathways. Accumulating evidence reveals that several methyltransferases and demethylases are essential regulators of autophagy, and recent studies have led to the identification of the lysine demethylase KDM1A/LSD1 as a promising drug target. KDM1A/LSD1 modulates autophagy at multiple levels, participating in the transcriptional control of several downstream effectors. This review summarizes our current understanding of the role of KDM1A/LSD1 in the autophagy regulatory network.


Asunto(s)
Autofagia , Histona Demetilasas/metabolismo , Histona Metiltransferasas/metabolismo , Animales , Autofagia/genética , Epigénesis Genética , Humanos , Modelos Biológicos , Transducción de Señal/genética
10.
J Exp Neurosci ; 12: 1179069518765743, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29581704

RESUMEN

The autophagy-lysosome pathway sustains cellular homeostasis and is a protective mechanism against neurodegenerative diseases. Recent findings highlight the role of the histone demethylases LSD1/LDM1A as a pivotal regulator of autophagy process, by controlling the mTORC1 cascade, in neuroblastoma cells. LSD1 binds to the promoter region of the SESN2 gene, where LSD1-mediated demethylation leads to the accumulation of repressive histone marks that maintain SESN2 expression at low levels. LSD1 depletion results in enhanced SESN2 expression and consequently mTORC1 inhibition, thereby triggering the induction of autophagy. Our study provides important insight into neuroepigenetic mechanisms regulating the autophagic process, offering additional opportunities for the development of novel therapeutic strategies in diseases associated with dysfunctional autophagy-lysosomal pathway.

11.
Biochim Biophys Acta Gene Regul Mech ; 1860(9): 905-910, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28720390

RESUMEN

The Lysine-specific demethylase 1, KDM1A/LSD1, plays a central role in the regulation of Pol II transcription through the removal of the activation mark (mono- and dimethyl lysine 4 of histone H3). LSD1 is often deregulated in human cancers, and it is frequently overexpressed in human solid cancers and leukemia. LSD1 regulates the epithelial mesenchymal transition (EMT) in epithelial cells, i.e., the ability to transition into mesenchymal cells, to lose homotypic adhesion and to acquire migratory capacity. From its initial discovery as a component of the Snail complex, multiple studies highlighted the causative role of LSD1 in cell invasiveness and EMT, describing its direct involvement in different molecular processes through the interaction with specific partners. Here we present an overview of the role of LSD1 in the EMT process, summarizing recent findings on its emerging functions in cell migration and invasion in cancer.


Asunto(s)
Epigénesis Genética/genética , Transición Epitelial-Mesenquimal/genética , Histona Demetilasas/metabolismo , Lisina/metabolismo , Neoplasias/genética , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patología
12.
Oncotarget ; 8(3): 3854-3869, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27894074

RESUMEN

Neuroblastoma (NB) with MYCN amplification is a highly aggressive and metastatic tumor in children. The high recurrence rate and resistance of NB cells to drugs urgently demands a better therapy for this disease. We have recently found that MYCN interacts with the lysine-specific demethylase 1 (LSD1), a histone modifier that participates in key aspects of gene transcription. In cancer cells, LSD1 contributes to the genetic reprogramming that underlies to Epithelial-Mesenchymal Transition (EMT) and tumor metastasis. Here, we show that LSD1 affects motility and invasiveness of NB cells by modulating the transcription of the metastasis suppressor NDRG1 (N-Myc Downstream-Regulated Gene 1). At mechanistic level, we found that LSD1 co-localizes with MYCN at the promoter region of the NDRG1 gene and inhibits its expression. Pharmacological inhibition of LSD1 relieves repression of NDRG1 by MYCN and affects motility and invasiveness of NB cells. These effects were reversed by overexpressing NDRG1. In NB tissues, high levels of LSD1 correlate with low levels of NDRG1 and reduced patients survival. Collectively, our findings elucidate a mechanism of how MYCN/LSD1 control motility and invasiveness of NB cells through transcription regulation of NDRG1 expression and suggest that pharmacological targeting of LSD1 represents a valuable approach for NB therapy.


Asunto(s)
Proteínas de Ciclo Celular/genética , Histona Demetilasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Epigénesis Genética , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Histona Demetilasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuroblastoma/genética , Regiones Promotoras Genéticas , Análisis de Supervivencia
13.
Oncotarget ; 7(4): 4949-60, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26700820

RESUMEN

DNA double strand breaks (DSBs) elicit prompt activation of DNA damage response (DDR), which arrests cell-cycle either in G1/S or G2/M in order to avoid entering S and M phase with damaged DNAs. Since mammalian tissues contain both proliferating and quiescent cells, there might be fundamental difference in DDR between proliferating and quiescent cells (or G0-arrested). To investigate these differences, we studied recruitment of DSB repair factors and resolution of DNA lesions induced at site-specific DSBs in asynchronously proliferating, G0-, or G1-arrested cells. Strikingly, DSBs occurring in G0 quiescent cells are not repaired and maintain a sustained activation of the p53-pathway. Conversely, re-entry into cell cycle of damaged G0-arrested cells, occurs with a delayed clearance of DNA repair factors initially recruited to DSBs, indicating an inefficient repair when compared to DSBs induced in asynchronously proliferating or G1-synchronized cells. Moreover, we found that initial recognition of DSBs and assembly of DSB factors is largely similar in asynchronously proliferating, G0-, or G1-synchronized cells. Our study thereby demonstrates that repair and resolution of DSBs is strongly dependent on the cell-cycle state.


Asunto(s)
Mama/metabolismo , Ciclo Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Recombinación Genética , Apoptosis , Western Blotting , Mama/patología , Proliferación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
Oncotarget ; 6(16): 14572-83, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26062444

RESUMEN

The chromatin-modifying enzyme lysine-specific demethylase 1, KDM1A/LSD1 is involved in maintaining the undifferentiated, malignant phenotype of neuroblastoma cells and its overexpression correlated with aggressive disease, poor differentiation and infaust outcome. Here, we show that LSD1 physically binds MYCN both in vitro and in vivo and that such an interaction requires the MYCN BoxIII. We found that LSD1 co-localizes with MYCN on promoter regions of CDKN1A/p21 and Clusterin (CLU) suppressor genes and cooperates with MYCN to repress the expression of these genes. KDM1A needs to engage with MYCN in order to associate with the CDKN1A and CLU promoters. The expression of CLU and CDKN1A can be restored in MYCN-amplified cells by pharmacological inhibition of LSD1 activity or knockdown of its expression. Combined pharmacological inhibition of MYCN and LSD1 through the use of small molecule inhibitors synergistically reduces MYCN-amplified Neuroblastoma cell viability in vitro. These findings demonstrate that LSD1 is a critical co-factor of the MYCN repressive function, and suggest that combination of LSD1 and MYCN inhibitors may have strong therapeutic relevance to counteract MYCN-driven oncogenesis.


Asunto(s)
Genes Supresores de Tumor/fisiología , Histona Demetilasas/genética , Lisina/metabolismo , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , ARN Interferente Pequeño/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Células HEK293 , Humanos , Lisina/genética , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/metabolismo , Transcripción Genética , Transfección
15.
Mutat Res ; 774: 6-13, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25770827

RESUMEN

Although it is established that when overexpressed, the MYC family proteins can cause DNA double-stand breaks (DSBs) and genome instability, the mechanisms involved remain unclear. MYC induced genetic instability may result from increased DNA damage and/or reduced DNA repair. Here we show that when overexpressed, MYC proteins induce a sustained DNA damage response (DDR) and reduce the wave of DSBs repair. We used a cell-based DSBs system whereby, upon induction of an inducible restriction enzyme AsiSI, hundreds of site-specific DSBs are generated across the genome to investigate the role of MYC proteins on DSB. We found that high levels of MYC do not block accumulation of γH2AX at AsiSI sites, but delay its clearance, indicating an inefficient repair, while the initial recognition of DNA damage is largely unaffected. Repair of both homologous and nonhomologous repair-prone segments, characterized by high or low levels of recruited RAD51, respectively, was delayed. Collectively, these data indicate that high levels of MYC proteins delay the resolution of DNA lesions engineered to occur in cell cultures.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sitios de Unión/genética , Western Blotting , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , ADN/genética , Enzimas de Restricción del ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Microscopía Fluorescente , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
16.
Mutat Res ; 749(1-2): 21-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23906511

RESUMEN

Double strand DNA breaks (DSBs) are one of the most challenging forms of DNA damage which, if left unrepaired, can trigger cellular death and can contribute to cancer. A number of studies have been focused on DNA-damage response (DDR) mechanisms, and most of them rely on the induction of DSBs triggered by chemical compounds or radiations. However, genotoxic drugs and radiation treatments of cultured cell lines induce random DSBs throughout the genome, thus heterogeneously across the cell population, leading to variability of the cellular response. To overcome this aspect, we used here a recently described cell-based DSBs system whereby, upon induction of an inducible restriction enzyme, hundreds of site-specific DSBs are generated across the genome. We show here that sequence-specific DSBs are sufficient to activate the positive transcription elongation factor b (P-TEFb), to trigger hyperphosphorylation of the largest RNA polymerase II carboxyl-terminal-domain (Rpb1-CTD) and to induce activation of p53-transcriptional axis resulting in cell cycle arrest.


Asunto(s)
Roturas del ADN de Doble Cadena , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Línea Celular Tumoral , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Fosforilación/genética , Estructura Terciaria de Proteína , Subunidades de Proteína , ARN Polimerasa II/química , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA