Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(5): e27032, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463810

RESUMEN

Introduction: Malaria is a parasitic disease that is endemic in tropical areas and can be life-threatening. There has been a decrease in the prevalence of malaria in Ghana but the burden of the disease is still high in the country. Many Ghanaians depend on herbal products for malaria treatment. This study aimed to survey and evaluate commercial herbal antimalarials in the Volta Region of Ghana. Methods: A survey of finished herbal antimalarials was done at herbal shops, pharmacies, and over-the-counter medicine seller shops. Products available on shelves were purchased and their details were recorded, after which they were examined using a visual inspection tool. The density, pH, and extract weight per dose of each sample were also determined. Results: Thirty-four liquid formulations (A-1-34) containing 1-9 different herbs were found. The majority of the product labels had errors in consumer age classifications. Unconventional ways of stating doses were found on two products (A-13, "tot"; A-19, cupful). Six products did not have dosing devices. No duration of treatment was indicated on 24 products. Dose errors were found on A-14 and A-22. Samples A-17 and A-28 did not have registration or batch numbers. Product A-28 did not have its herbs listed on it and was indicated for persons aged 3-8 years at a dose of 45 mL. The relative density range for the products was 0.997-1.015. From the pH investigation, no product was extremely erosive; however, 10 samples were deemed erosive (pH, 3.0-3.99), whereas 24 were minimally erosive (pH, ≥4.0). The extract weight per dose volume (20-90 mL) was 0.048-1.766 g, indicating that unit dose capsules or tablets could be formulated from the products. Conclusion: The findings clearly show that Ghanaian authorities responsible for regulating herbal products must enforce guidelines for the formulation, label details, and sale of antimalarial products. Additionally, the unpleasant taste of liquid herbal mixtures can affect patient compliance and dosing convenience; therefore, it is recommended that oral solid dosage forms of herbal antimalarials are produced as alternatives to the liquid mixtures.

2.
Drug Des Devel Ther ; 18: 613-630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476206

RESUMEN

Oral administration of dosage forms is convenient and beneficial in several respects. Lipid nanoparticulate dosage forms have emerged as a useful carrier system in deploying low solubility drugs systemically, particularly class II, III, and IV drugs of the Biopharmaceutics Classification System. Like other nanoparticulate delivery systems, their low size-to-volume ratio facilitates uptake by phagocytosis. Lipid nanoparticles also provide scope for high drug loading and extended-release capability, ensuring diminished systemic side effects and improved pharmacokinetics. However, rapid gastrointestinal (GI) clearance of particulate delivery systems impedes efficient uptake across the mucosa. Mucoadhesion of dosage forms to the GI mucosa results in longer transit times due to interactions between the former and mucus. Delayed transit times facilitate transfer of the dosage form across the mucosa. In this regard, a balance between mucoadhesion and mucopenetration guarantees optimal systemic transfer. Furthermore, the interplay between GI anatomy and physiology is key to ensuring efficient systemic uptake. This review captures salient anatomical and physiological features of the GI tract and how these can be exploited for maximal systemic delivery of lipid nanoparticles. Materials used to impart mucoadhesion and examples of successful mucoadhesive lipid nanoformulations are highlighted in this review.


Asunto(s)
Nanopartículas , Liposomas , Tracto Gastrointestinal , Administración Oral , Lípidos , Sistemas de Liberación de Medicamentos
3.
PLoS One ; 18(2): e0278231, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730151

RESUMEN

INTRODUCTION: Pseudospondias microcarpa (Anacardiaceae) is a plant widely used traditionally for treating various central nervous system disorders. A previous study in our laboratory confirmed that the hydroethanolic leaf extract (PME) of the plant produces an antidepressant-like effect in rodent models of behavioral despair. However, its effect on depressive-like behavior induced by chronic mild stress (CMS) and its time course of action are still unknown. In this context, the long-term effects of PME on cognitive function and depressive- and anxiety-like behavior caused by CMS were assessed. METHODS: Male ICR mice were exposed to CMS for nine weeks and anhedonia was evaluated by monitoring sucrose intake (SIT) weekly. PME (30, 100, or 300 mg kg-1) or fluoxetine (FLX) (3, 10, or 30 mg kg-1) was administered to the mice during the last six weeks of CMS. Behavioral tests-coat state, splash test, forced swimming test (FST), tail suspension test (TST), elevated plus maze (EPM), open field test (OFT), novelty suppressed feeding (NSF), EPM transfer latency, and Morris water maze (MWM)-were performed after the nine-week CMS period. RESULTS: When the mice were exposed to CMS, their SIT and grooming behavior reduced (splash test), their coat status was poor, they became more immobile (FST and TST), more anxious (OFT, EPM, and NSF), and their cognitive function was compromised (EPM transfer latency and MWM tests). Chronic PME treatment, however, was able to counteract these effects. Additionally, following two (2) weeks of treatment, PME significantly boosted SIT in stressed mice (30 mg kg-1, P<0.05; 100 mg kg-1, P<0.05; and 300 mg kg-1, P<0.001), as compared to four (4) weeks of treatment with FLX. CONCLUSION: The present findings demonstrate that PME produces a rapid and sustained antidepressant-like action and reverses behavioral changes induced by chronic exposure to mild stressors.


Asunto(s)
Anacardiaceae , Animales , Ratones , Ratones Endogámicos ICR , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Fluoxetina/farmacología , Depresión/tratamiento farmacológico , Extractos Vegetales/farmacología , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad , Conducta Animal
4.
Scientifica (Cairo) ; 2022: 9223858, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311285

RESUMEN

Introduction: Administering the right dose of medications is essential in avoiding potentially life-threatening adverse drug reactions. Industry guidelines for manufacturers of oral, over-the-counter, and liquid medications recommend including dose-delivery devices with packaging to limit dosing inaccuracy. This study describes the prevalence and accuracy of dosing devices packaged with oral liquid medications in the Ho municipality of Ghana. Methods: Dosing device accuracy was determined after deviation of the measured volume from the expected volume was evaluated using the United States Pharmacopoeia criteria. Results: A total of 78.6% of the oral liquid medications were packaged with a dosing device. The most common dosing devices were cups (83.6%), followed by spoons (14.3%), droppers (1.4%), and syringes (0.7%). The volumes measured with cups (5.14 ± 0.52 mL, p = 0.006) and spoons (5.3 ± 0.67 mL, p < 0.001) were significantly different from the desired 5 mL volume; this was dissimilar to the volume measured using syringes (5.01 ± 0.02 mL, p > 0.999). Further, the measured volumes for 38.6% and 72.2% of the cups and spoons, respectively, deviated by more than 15% of 5 mL. Conclusion: Dosing cups and spoons are associated with significant inaccuracy. Yet, manufacturers continually favour them over syringes in packaging for oral liquid medications. This is unacceptable and of considerable concern due to the risk of variations in therapeutic outcomes. Therefore, strict regulatory directives on the inclusion of accurate dosing devices in the packaging of oral liquid medicines are needed to reduce the possibility of medication errors.

5.
Adv Pharmacol Pharm Sci ; 2022: 7235489, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265846

RESUMEN

Elimination of microorganisms from herbal products has been a major concern due to its implicated health risk to consumers. Drying of herbal materials has been employed for centuries to reduce the risk of contamination and spoilage. The present study adopted three drying approaches in an attempt to eliminate microorganisms from Lippia multiflora tea bag formulation. This study also evaluated the tea bags and optimized the extraction procedure. The L. multiflora leaves for tea bagging were air-dried and milled (A), oven-dried and milled (B), and microwaved (the milled air-dried leaves) (C). The moisture contents were determined at 105°C ± 2°C for 2 hours to constant weight. Phytochemical parameters such as phytochemical constituents, total water extractive, and pH were assessed. The microbial safety and quality of the L. multiflora tea bags were evaluated using the British Pharmacopoeia 2019 specifications. The uniformity of the mass of the formulated tea bags was also determined. Extraction from the Lippia tea bags was optimized. The results showed that using the approaches (A, B, and C) adopted for drying and processing, the moisture contents of the formulated tea bags were in the range of 9.75-10.71% w/w. All the formulated tea bags contained reducing sugars, phenolic compounds, polyuronides, flavonoids, anthracenosides, alkaloids, saponins, and phytosterols. The pH range of the formulations was 7.11-7.54, whereas the total water extractive values were in the range of 19.12-20.41% w/w. The one-way analysis of variance demonstrated no significant difference in the data obtained from the results from A, B, and C. The formulation from A was found to be unsafe for consumption due to unacceptable microbial contamination limits. Microbial load of the formulations from B and C were within the BP specifications. All the batches of the formulations passed the uniformity of mass test. An optimized extraction procedure was obtained when one tea bag was extracted in 250 mL of hot water within the specified time. L. multiflora leaves meant for tea bagging should be oven-dried or microwaved before tea bagging for safe consumption.

6.
Molecules ; 27(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35056675

RESUMEN

There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.


Asunto(s)
Curcumina
7.
Front Pharmacol ; 12: 646836, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912058

RESUMEN

Technological advances in science over the past century have paved the way for remedial treatment outcomes in various diseases. Pharmacogenomic predispositions, the emergence of multidrug resistance, medication and formulation errors contribute significantly to patient mortality. The concept of "personalized" or "precision" medicines provides a window to addressing these issues and hence reducing mortality. The emergence of three-dimensional printing of medicines over the past decades has generated interests in therapeutics and dispensing, whereby the provisions of personalized medicines can be built within the framework of producing medicines at dispensaries or pharmacies. This plan is a good replacement of the fit-for-all modality in conventional therapeutics, where clinicians are constrained to prescribe pre-formulated dose units available on the market. However, three-dimension printing of personalized medicines faces several hurdles, but these are not insurmountable. In this review, we explore the relevance of personalized medicines in therapeutics and how three-dimensional printing makes a good fit in current gaps within conventional therapeutics in order to secure an effective implementation of personalized medicines. We also explore the deployment of three-dimensional printing of personalized medicines based on practical, legal and regulatory provisions.

8.
Molecules ; 26(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572168

RESUMEN

Solid lipid nanoparticles (SLNs) have the potential to enhance the systemic availability of an active pharmaceutical ingredient (API) or reduce its toxicity through uptake of the SLNs from the gastrointestinal tract or controlled release of the API, respectively. In both aspects, the responses of the lipid matrix to external challenges is crucial. Here, we evaluate the effects of lyophilization on key responses of 1:1 beeswax-theobroma oil matrix SLNs using three model drugs: amphotericin B (AMB), paracetamol (PAR), and sulfasalazine (SSZ). Fresh SLNs were stable with sizes ranging between 206.5-236.9 nm. Lyophilization and storage for 24 months (4-8 °C) caused a 1.6- and 1.5-fold increase in size, respectively, in all three SLNs. Zeta potential was >60 mV in fresh, stored, and lyophilized SLNs, indicating good colloidal stability. Drug release was not significantly affected by lyophilization up to 8 h. Drug release percentages at end time were 11.8 ± 0.4, 65.9 ± 0.04, and 31.4 ± 1.95% from fresh AMB-SLNs, PAR-SLNs, and SSZ-SLNs, respectively, and 11.4 ± 0.4, 76.04 ± 0.21, and 31.6 ± 0.33% from lyophilized SLNs, respectively. Thus, rate of release is dependent on API solubility (AMB < SSZ < PAR). Drug release from each matrix followed the Higuchi model and was not affected by lyophilization. The above SLNs show potential for use in delivering hydrophilic and lipophilic drugs.


Asunto(s)
Cacao/química , Portadores de Fármacos/química , Lípidos/química , Nanopartículas/química , Preparaciones Farmacéuticas/química , Aceites de Plantas/química , Ceras/química , Acetaminofén/química , Anfotericina B/química , Composición de Medicamentos , Liofilización , Interacciones Hidrofóbicas e Hidrofílicas , Sulfasalazina/química
9.
Int J Pharm ; 517(1-2): 42-49, 2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27923696

RESUMEN

Oral delivery of pharmaceuticals requires that they retain their physical and chemical attributes during transit within the gastrointestinal (GI) tract, for the manifestation of desired therapeutic profiles. Solid lipid nanoparticles (SLNs) are used as carriers to improve the absorption of hydrophobic drugs. In this study, we examine the stability of amphotericin B (AmB) and paracetamol (PAR) SLNs in simulated GI fluids during gastric emptying. On contact with the simulated fluids, the particles increased in size due to ingress of the dissolution media into the particles. Simulated gastric emptying revealed that the formulations had mean sizes <350nm and neutral surface charges, both of which are optimal for intestinal absorption of SLNs. There was ingress of the fluids into the SLNs, followed by diffusion of the dissolved drug, whose rate depended on the solubility of the loaded-drug in the particular medium. Time-of-flight secondary ion mass spectrometry analyses indicated that drug loading followed the core-shell model and that the AmB SLNs have a more drug-enriched core than the PAR SLNs do. The AmB SLNs are therefore a very suitable carrier of AmB for oral delivery. The stability of the SLNs in the simulated GI media indicates their suitability for oral delivery.


Asunto(s)
Acetaminofén/farmacología , Anfotericina B/farmacología , Portadores de Fármacos/química , Vaciamiento Gástrico/efectos de los fármacos , Lípidos/química , Nanopartículas/química , Acetaminofén/administración & dosificación , Acetaminofén/química , Administración Oral , Anfotericina B/administración & dosificación , Anfotericina B/química , Estabilidad de Medicamentos , Humanos , Modelos Biológicos , Propiedades de Superficie
10.
AAPS PharmSciTech ; 17(5): 1060-6, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26511938

RESUMEN

Amphotericin B (AmB) is poorly absorbed from the gastrointestinal tract. Recent studies have suggested enhanced drug absorption from solid lipid nanoparticles (SLN). Little is known of the fate of AmB absorption within the gastrointestinal tract, and no gastrointestinal transit study has yet been performed on AmB-containing nano-formulations. We aimed to investigate the effect of food on the gastrointestinal transit properties of an AmB-containing SLN in rats. Three SLNs containing AmB, paracetamol, or sulfasalazine were formulated using cocoa butter and beeswax as lipid matrices and simultaneously administered orally to Sprague-Dawley rats. Paracetamol and sulfapyridine were used as marker drugs for estimating gastric emptying and cecal arrival, respectively. The pharmacokinetic data generated for paracetamol and sulfapyridine were used in estimating the absorption of the AmB SLNs in the small and large intestines, respectively. A delayed rate of AmB absorption was observed in the fed state; however, the extent of absorption was not affected by food. Specifically, the percentages of AmB absorption during the fasted state in the stomach, small intestine, and colon were not significantly different from absorption within the respective regions in the fed state. In both states, however, absorption was highest in the colon and appeared to be a combination of absorption from the small intestine plus absorption proper within the colon. The study suggests that AmB SLN, irrespective of food status, is slowly but predominantly taken up by the lymph, making the small intestine the most favorable site for the delivery of the AmB SLNs.


Asunto(s)
Anfotericina B/metabolismo , Tracto Gastrointestinal/metabolismo , Tránsito Gastrointestinal/fisiología , Lípidos/administración & dosificación , Nanopartículas/administración & dosificación , Acetaminofén/metabolismo , Animales , Química Farmacéutica/métodos , Digestión/fisiología , Alimentos , Vaciamiento Gástrico/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Sulfapiridina/metabolismo
11.
AAPS PharmSciTech ; 16(4): 871-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25588365

RESUMEN

The gastrointestinal (GI) transit behavior of and absorption from an amphotericin B (AmB) solid lipid nanoformulation (SLN) in rats was investigated. We aimed to estimate the gastric emptying time (GET) and cecal arrival time (CAT) of AmB SLN in rats as animal models. From these two parameters, an insight on the absorption window of AmB was ascertained. Three types of SLNs, AmB, paracetamol (PAR), and sulfasalazine (SSZ), were similarly formulated using beeswax/theobroma oil composite as the lipid matrix and characterized with regard to size, viscosity, density, migration propensity within agarose gel, in vitro drug release, morphology, gastrointestinal transit, and in vivo absorption. The GET and CAT were estimated indirectly using marker drugs: PAR and sulfapyridine (SP). All three types of SLNs exhibited identical properties with regard to z-average, viscosity, relative density, and propensity to migrate. PAR was absorbed rapidly from the small intestine following emptying of the SLNs giving the T50E (time for 50% absorption of PAR) to be 1.6 h. SP was absorbed after release and microbial degradation of SSZ from SLN in the colon with a lag time of 2 h post-administration, serving as the estimated cecal arrival time of the SLNs. AmB within SLN was favorably absorbed from the small intestine, albeit slowly.


Asunto(s)
Anfotericina B/farmacocinética , Tránsito Gastrointestinal , Lípidos/química , Nanopartículas , Acetaminofén/administración & dosificación , Acetaminofén/farmacocinética , Anfotericina B/administración & dosificación , Animales , Rastreo Diferencial de Calorimetría , Microscopía Electrónica de Rastreo , Ratas , Sulfasalazina/administración & dosificación , Sulfasalazina/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...