Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(1): 170-178, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38155534

RESUMEN

Characterization of the elemental distribution of samples with rough surfaces has been strongly desired for the analysis of various natural and artificial materials. Particularly for pristine and rare analytes with micrometer sizes embedded on specimen surfaces, non-invasive and matrix effect-free analysis is required without surface polishing treatment. To satisfy these requirements, we proposed a new method employing the sequential combination of two imaging modalities, i.e., microenergy-dispersive X-ray fluorescence (micro-XRF) and Raman micro-spectroscopy. The applicability of the developed method is tested by the quantitative analysis of cation composition in micrometer-sized carbonate grains on the surfaces of intact particles sampled directly from the asteroid Ryugu. The first step of micro-XRF imaging enabled a quick search for the sparsely scattered and micrometer-sized carbonates by the codistributions of Ca2+ and Mn2+ on the Mg2+- and Fe2+-rich phyllosilicate matrix. The following step of Raman micro-spectroscopy probed the carbonate grains and analyzed their cation composition (Ca2+, Mg2+, and Fe2+ + Mn2+) in a matrix effect-free manner via the systematic Raman shifts of the lattice modes. The carbonates were basically assigned to ferroan dolomite bearing a considerable amount of Fe2+ + Mn2+ at around 10 atom %. These results are in good accordance with the assignments reported by scanning electron microscopy-energy-dispersive X-ray spectroscopy, where the thin-sectioned and surface-polished Ryugu particles were applicable. The proposed method requires neither sectioning nor surface polishing; hence, it can be applied to the remote sensing apparatus on spacecrafts and planetary rovers. Furthermore, the non-invasive and matrix effect-free characterization will provide a reliable analytical tool for quantitative analysis of the elemental distribution on the samples with surface roughness and chemical heterogeneity at a micrometer scale, such as art paintings, traditional crafts with decorated shapes, as well as sands and rocks with complex morphologies in nature.

2.
Sci Adv ; 9(45): eadi7048, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939187

RESUMEN

Studies of material returned from Cb asteroid Ryugu have revealed considerable mineralogical and chemical heterogeneity, stemming primarily from brecciation and aqueous alteration. Isotopic anomalies could have also been affected by delivery of exogenous clasts and aqueous mobilization of soluble elements. Here, we show that isotopic anomalies for mildly soluble Cr are highly variable in Ryugu and CI chondrites, whereas those of Ti are relatively uniform. This variation in Cr isotope ratios is most likely due to physicochemical fractionation between 54Cr-rich presolar nanoparticles and Cr-bearing secondary minerals at the millimeter-scale in the bulk samples, likely due to extensive aqueous alteration in their parent bodies that occurred [Formula: see text] after Solar System birth. In contrast, Ti isotopes were marginally affected by this process. Our results show that isotopic heterogeneities in asteroids are not all nebular or accretionary in nature but can also reflect element redistribution by water.

3.
Nat Commun ; 14(1): 4940, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37643999

RESUMEN

The short-lived radionuclide aluminium-26 (26Al) isotope is a major heat source for early planetary melting. The aluminium-26 - magnesium-26 (26Al-26Mg) decay system also serves as a high-resolution relative chronometer. In both cases, however, it is critical to establish whether 26Al was homogeneously or heterogeneously distributed throughout the solar nebula. Here we report a precise lead-207 - lead-206 (207Pb-206Pb) isotopic age of 4565.56 ± 0.12 million years (Ma) for the andesitic achondrite Erg Chech 002. Our analysis, in conjunction with published 26Al-26Mg data, reveals that the initial 26Al/27Al in the source material of this achondrite was notably higher than in various other well-preserved and precisely dated achondrites. Here we demonstrate that the current data clearly indicate spatial heterogeneity of 26Al by a factor of 3-4 in the precursor molecular cloud or the protoplanetary disk of the Solar System, likely associated with the late infall of stellar materials with freshly synthesized radionuclides.

4.
Sci Adv ; 9(28): eadh1003, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450600

RESUMEN

Preliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matter. The high presolar silicate abundance (104 ppm) indicates that the clast escaped extensive alteration. The 5 to 10 times higher abundances of presolar SiC (~235 ppm), N-rich organic matter, organics with N isotopic anomalies (1.2%), and organics with C isotopic anomalies (0.2%) in the primitive clasts compared to bulk Ryugu suggest that the clasts formed in a unique part of the protoplanetary disk enriched in presolar materials. These clasts likely represent previously unsampled outer solar system material that accreted onto Ryugu after aqueous alteration ceased, consistent with Ryugu's rubble pile origin.


Asunto(s)
Carbono , Meteoroides , Carbono/análisis , Sistema Solar , Silicatos
5.
Science ; 379(6634): eabn7850, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35679354

RESUMEN

Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples. The samples are mainly composed of materials similar to those of carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37° ± 10°C, about [Formula: see text] million (statistical) or [Formula: see text] million (systematic) years after the formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles that of the Sun's photosphere than other natural samples do.

6.
Sci Adv ; 8(50): eade2067, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525483

RESUMEN

The extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: 16O-rich (associated with refractory inclusions) and 16O-poor (associated with chondrules). Both the 16O-rich and 16O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward. The abundance ratios of the 16O-rich to 16O-poor minerals in Ryugu and CI chondrites are higher than in other carbonaceous chondrite groups but are similar to that of comet 81P/Wild2, suggesting that Ryugu and CI chondrites accreted in the outer Solar System closer to the accretion region of comets.

7.
Sci Adv ; 8(46): eadd8141, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36264823

RESUMEN

Little is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby planetesimals and ejected some inward to be implanted into the Main Belt. In this framework, most carbonaceous chondrites may have originated from regions around the birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar System to excitation by Uranus and Neptune.

8.
Appl Radiat Isot ; 188: 110362, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35839713

RESUMEN

In this paper we describe experiments on two enriched 40K solutions to accurately determine decay data. The first solution was measured in 2004/2005 by means of a gamma-ray spectrometer with low background and a liquid scintillation (LS) counter to apply the CIEMAT/NIST efficiency tracing method. A combination of results yields an emission probability of the 1461 keV gamma-rays of Pγ = 0.1030(11) which is lower than current results of data evaluations. The activity concentration of the second solution was also determined by means of LS counting, but here, the CIEMAT/NIST efficiency tracing method as well as the TDCR method were applied. Again, the result was combined with that of independent gamma-ray spectrometry and the gamma-ray emission probability was found to be Pγ = 0.1029(9) in good agreement with the result obtained from the first solution. A combination of both experiments yields Pγ = 0.1029(9). The spectra of a TriCarb LS counter were carefully analyzed and a beta minus emission probability [Formula: see text]  = 0.8954(14) was determined. The new results for Pγ and [Formula: see text] indicate that the overall probability of the decay via EC in recent data evaluations is overestimated. The LS counting efficiencies were computed with a stochastic model and up-to-date calculations of the beta spectrum and fractional EC probabilities were used. The final activity result of the second solution is combined with the outcome of a comprehensive isotopic analysis to determine the half-life of 40K which is found to be 1.2536(27) ·109 years. All above-stated uncertainties are standard uncertainties (k = 1).


Asunto(s)
Radioisótopos , Espectrometría gamma , Semivida , Radioisótopos/análisis , Estándares de Referencia , Incertidumbre
9.
Proc Natl Acad Sci U S A ; 112(17): 5331-6, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25870298

RESUMEN

Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The (176)Lu-(176)Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day (176)Hf/(177)Hf and (176)Lu/(177)Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess (176)Hf due to the accelerated decay of (176)Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu-Hf system. Herein we report the first, to our knowledge, high-precision Lu-Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial (176)Hf/(177)Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess (176)Hf and accurately represent the Lu-Hf system of the bulk Earth ((176)Hf/(177)Hf = 0.282793 ± 0.000011; (176)Lu/(177)Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago.

10.
Anal Chem ; 85(23): 11258-64, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24144186

RESUMEN

Evidence of (176)Hf excess in select meteorites older than 4556Ma was suggested to be caused by excitation of long-lived natural radionuclide (176)Lu to its short-lived isomer (176m)Lu, due to an irradiation event during accretion in the early solar system. A result of this process would be a deficit in (176)Lu in irradiated samples by between 1‰ and 7‰. Previous measurements of the Lu isotope ratio in rock samples have not been of sufficient precision to resolve such a phenomenon. We present a new analytical technique designed to measure the (176)Lu/(175)Lu isotope ratio in rock samples to a precision of ~0.1‰ using a multicollector inductively coupled mass spectrometer (MC-ICPMS). To account for mass bias we normalized all unknowns to Ames Lu. To correct for any drift and instability associated with mass bias, all standards and samples are doped with W metal and normalized to the nominal W isotopic composition. Any instability in the mass bias is then corrected by characterizing the relationship between the fractionation factor of Lu and W, which is calculated at the start of every analytical session. After correction for isobaric interferences, in particular (176)Yb, we were able to measure (176)Lu/(175)Lu ratios in samples to a precision of ~0.1‰. However, these terrestrial standards were fractionated from Ames Lu by an average of 1.22 ± 0.09‰. This offset in (176)Lu/(175)Lu is probably caused by isotopic fractionation of Lu during industrial processing of the Ames Lu standard. To allow more straightforward data comparison we propose the use of NIST3130a as a bracketing standard in future studies. Relative to NIST3130a, the terrestrial standards have a final weighted mean δ(176)Lu value of 0.11 ± 0.09‰. All samples have uncertainties of better than 0.11‰; hence, our technique is fully capable of resolving any differences in δ(176)Lu of greater than 1‰.

11.
Science ; 310(5756): 1914-5, 2005 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-16373565
12.
Science ; 310(5749): 839-41, 2005 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-16272119

RESUMEN

The use of radioactive decay of 176Lu to 176Hf to study the evolution of the Earth requires a precise and accurate value for the 176Lu decay constant. Recent determinations of this decay constant by age comparison to the more precisely calibrated U-Pb isotopic system produced internally consistent but discrepant values between terrestrial minerals and meteorites. New highly radiogenic Lu-Hf data for phosphate minerals from Richardton (ordinary chondrite) and Acapulco (primitive achondrite) yield decay constant values of 1.864 x 10(-11) +/- 0.016 x 10(-11) and 1.832 x 10(-11) +/- 0.029 x 10(-11) year(-1), respectively, identical to the value determined from terrestrial minerals.

13.
Nature ; 436(7053): 989-92, 2005 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16107841

RESUMEN

Chondrules, which are the major constituent of chondritic meteorites, are believed to have formed during brief, localized, repetitive melting of dust (probably caused by shock waves) in the protoplanetary disk around the early Sun. The ages of primitive chondrules in chondritic meteorites indicate that their formation started shortly after that of the calcium-aluminium-rich inclusions (4,567.2 +/- 0.7 Myr ago) and lasted for about 3 Myr, which is consistent with the dissipation timescale for protoplanetary disks around young solar-mass stars. Here we report the 207Pb-206Pb ages of chondrules in the metal-rich CB (Bencubbin-like) carbonaceous chondrites Gujba (4,562.7 +/- 0.5 Myr) and Hammadah al Hamra 237 (4,562.8 +/- 0.9 Myr), which formed during a single-stage, highly energetic event. Both the relatively young ages and the single-stage formation of the CB chondrules are inconsistent with formation during a nebular shock wave. We conclude that chondrules and metal grains in the CB chondrites formed from a vapour-melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated. These findings therefore provide evidence for planet-sized objects in the earliest asteroid belt, as required by current numerical simulations of planet formation in the inner Solar System.

14.
Science ; 297(5587): 1678-83, 2002 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-12215641

RESUMEN

The lead-lead isochron age of chondrules in the CR chondrite Acfer 059 is 4564.7 +/- 0.6 million years ago (Ma), whereas the lead isotopic age of calcium-aluminum-rich inclusions (CAIs) in the CV chondrite Efremovka is 4567.2 +/- 0.6 Ma. This gives an interval of 2.5 +/- 1.2 million years (My) between formation of the CV CAIs and the CR chondrules and indicates that CAI- and chondrule-forming events lasted for at least 1.3 My. This time interval is consistent with a 2- to 3-My age difference between CR CAIs and chondrules inferred from the differences in their initial 26Al/27Al ratios and supports the chronological significance of the 26Al-26Mg systematics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...