Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Vet Microbiol ; 282: 109757, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37119567

RESUMEN

Enterococcus cecorum is a member of the normal poultry gut microbiota and an emerging poultry pathogen. Some strains are resistant to key antibiotics and coccidiostats. We evaluated the impact on chicken excretion and persistence of a multidrug-resistant E. cecorum of administering narasin or antibiotics. E. cecorum CIRMBP-1294 (Ec1294) is non-wild-type to many antimicrobials, including narasin, levofloxacin, oxytetracycline and glycopeptides, it has a low susceptibility to amoxicillin, and carries a chromosomal vanA operon. Six groups of 15 chicks each were orally inoculated with Ec1294 and two groups were left untreated. Amoxicillin, oxytetracycline or narasin were administered orally to one group each, either at the recommended dose for five days (amoxicillin, oxytetracycline) or continuously (narasin). Faecal samples were collected weekly and caecal samples were obtained from sacrificed birds on day 28. Ec1294 titres were evaluated by culture on vancomycin- and levofloxacin-supplemented media in 5 % CO2. For inoculated birds given narasin, oxytetracycline or no antimicrobials, vancomycin-resistant enterococci were searched by culture on vancomycin-supplemented media incubated in air, and a PCR was used to detect the vanA gene. Ec1294 persisted in inoculated chicks up to day 28. Compared to the control group, the Ec1294 titre was significantly lower in the amoxicillin- and narasin-receiving groups on days 21 and 28, but was unexpectedly higher in the oxytetracycline-receiving group before and after oxytetracycline administration, preventing a conclusion for this group. No transfer of the vanA gene to other enterococci was detected. Other trials in various experimental conditions should now be conducted to confirm this apparent absence of co-selection of the multi-drug-resistant E. cecorum by narasin or amoxicillin administration.


Asunto(s)
Antibacterianos , Oxitetraciclina , Animales , Antibacterianos/farmacología , Vancomicina , Pollos , Oxitetraciclina/farmacología , Levofloxacino , Amoxicilina/farmacología
2.
Poult Sci ; 102(4): 102510, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764139

RESUMEN

Campylobacter infections traced mainly to poultry products are major bacterial foodborne zoonoses. Among the many control strategies evaluated at primary poultry level to reduce these infections, vaccination could be a solution, but no effective vaccines are available to date. A better understanding of the immune mechanisms involved in protection against Campylobacter would be helpful for designing novel vaccine strategies. The present study was designed to analyze in more depth the immune responses developed in broilers in order to potentially identify which immune parameters may be important for establishing protection against Campylobacter by comparing the immune responses obtained here with those obtained in a previous study performed on vaccinated specific-pathogen-free Leghorn chickens that presented a partial reduction of Campylobacter after experimental challenge. The protection against Campylobacter colonization was evaluated at different time points over 40 d of rearing, by measuring specific IgY levels in serum and IgA antibodies in bile reflecting the systemic and mucosal humoral responses respectively and the relative expressions of 9 cecal immune marker genes (cytokines and antimicrobial peptides), which reflect the innate and cellular immune responses. Despite no reduction of Campylobacter in the cecum, a systemic immune response over time characterized by the production of specific anti-flagellin IgY was observed, in addition to upregulation of the antimicrobial peptide avian ß-defensin (AvBD) 12 gene expression in the cecum of vaccinated broilers compared with the placebo group. However, the levels of specific anti-flagellin mucosal IgA antibodies in the bile as well as the relative expression of other cecal cytokines studied was underexpressed in the vaccinated group or similar in both groups.


Asunto(s)
Infecciones por Campylobacter , Campylobacter jejuni , Campylobacter , Enfermedades de las Aves de Corral , Animales , Vacunas Bacterianas , Infecciones por Campylobacter/prevención & control , Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/genética , Ciego/microbiología , Pollos , Flagelina , Inmunidad , Inmunoglobulina A , Enfermedades de las Aves de Corral/microbiología , Vacunación/veterinaria
3.
Vaccine ; 41(1): 145-158, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36411134

RESUMEN

In France during winter 2016-2017, 487 outbreaks of clade 2.3.4.4b H5N8 subtype high pathogenicity (HP) avian influenza A virus (AIV) infections were detected in poultry and captive birds. During this epizootic, HPAIV A/decoy duck/France/161105a/2016 (H5N8) was isolated and characterized in an experimental infection transmission model in conventional mule ducks. To investigate options to possibly protect such ducks against this HPAIV, three vaccines were evaluated in controlled conditions. The first experimental vaccine was derived from the hemagglutinin gene of another clade 2.3.4.4b A(H5N8) HPAIV. It was injected at three weeks of age, either alone (Vac1) or after a primer injection at day-old (Vac1 + boost). The second vaccine (Vac2) was a commercial bivalent adjuvanted vaccine containing an expressed hemagglutinin modified from a clade 2.3.2 A(H5N1) HPAIV. Vac2 was administered as a single injection at two weeks of age. The third experimental vaccine (Vac3) also incorporated a homologous 2.3.4.4b H5 HA gene and was administered as a single injection at three weeks of age. Ducks were challenged with HPAIV A/decoy duck/France/161105a/2016 (H5N8) at six weeks of age. Post-challenge virus excretion was monitored in vaccinated and control birds every 2-3 days for two weeks using real-time reverse-transcription polymerase chain reaction and serological analyses (haemagglutination inhibition test against H5N8, H5 ELISA and AIV ELISA) were performed. Vac1 abolished oropharyngeal and cloacal shedding to almost undetectable levels, whereas Vac3 abolished cloacal shedding only (while partially reducing respiratory shedding) and Vac2 only partly reduced the respiratory and intestinal excretion of the challenge virus. These results provided relevant insights in the immunogenicity of recombinant H5 vaccines in mule ducks, a rarely investigated hybrid between Pekin and Muscovy duck species that has played a critical role in the recent H5 HPAI epizootics in France.


Asunto(s)
Patos , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Equidae , Hemaglutininas , Enfermedades de las Aves de Corral/prevención & control , Vacunas Sintéticas , Virulencia
4.
Virus Res ; 323: 198999, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36379388

RESUMEN

The antigenic characterization of IBDV, a virus that causes an immunosuppressive disease in young chickens, has been historically addressed using cross virus neutralization (VN) assay and antigen-capture enzyme-linked immunosorbent (AC-ELISA). However, VN assay has been usually carried out either in specific antibody negative embryonated eggs, for non-cell culture adapted strains, which is tedious, or on chicken embryo fibroblasts (CEF), which requires virus adaptation to cell culture. AC-ELISA has provided crucial information about IBDV antigenicity, but this information is limited to the epitopes included in the tested panel with a lack of information of overall antigenic view. The present work aimed at overcoming those technical limitations and providing an extensive antigenic landscape based on original cross VN assays employing primary chicken B cells, where no previous IBDV adaptation is required. Sixteen serotype 1 IBDV viruses, comprising both reference strains and documented antigenic variants were tested against eleven chicken post-infectious sera. The VN data were analysed by antigenic cartography, a method which enables reliable high-resolution quantitative and visual interpretation of large binding assay datasets. The resulting antigenic cartography revealed i) the existence of several antigenic clusters of IBDV, ii) high antigenic relatedness between some genetically unrelated viruses, iii) a highly variable contribution to global antigenicity of previously identified individual epitopes and iv) broad reactivity of chicken sera raised against antigenic variants. This study provides an overall view of IBDV antigenic diversity. Implementing this approach will be instrumental to follow the evolution of IBDV antigenicity and control the disease.

5.
Viruses ; 14(7)2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35891373

RESUMEN

Infectious Bronchitis virus (IBV) continues to cause significant economic losses for the chicken industry despite the use of many live IBV vaccines around the world. Several authors have suggested that vaccine-induced partial protection may contribute to the emergence of new IBV strains. In order to study this hypothesis, three passages of a challenge IBV were made in SPF chickens sham inoculated or vaccinated at day of age using a live vaccine heterologous to the challenge virus. All birds that were challenged with vaccine heterologous virus were positive for viral RNA. NGS analysis of viral RNA in the unvaccinated group showed a rapid selection of seven genetic variants, finally modifying the consensus genome of the viral population. Among them, five were non-synonymous, modifying one position in NSP 8, one in NSP 13, and three in the Spike protein. In the vaccinated group, one genetic variant was selected over the three passages. This synonymous modification was absent from the unvaccinated group. Under these conditions, the genome population of an IBV challenge virus evolved rapidly in both heterologous vaccinated and non-vaccinated birds, while the genetic changes that were selected and the locations of these were very different between the two groups.


Asunto(s)
Bronquitis , Enfermedades Transmisibles , Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Evolución Molecular , Virus de la Bronquitis Infecciosa/genética , ARN Viral/genética , Vacunas Atenuadas , Vacunas Virales/genética
6.
Front Vet Sci ; 9: 871549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558891

RESUMEN

Immunosuppression in poultry production is a recurrent problem worldwide, and one of the major viral immunosuppressive agents is Infectious Bursal Disease Virus (IBDV). IBDV infections are mostly controlled by using live-attenuated vaccines. Live-attenuated Infectious Bursal Disease (IBD) vaccine candidates are classified as "mild," "intermediate," "intermediate-plus" or "hot" based on their residual immunosuppressive properties. The immunosuppression protocol described by the European Pharmacopoeia (Ph. Eur.) uses a lethal Newcastle Disease Virus (NDV) infectious challenge to measure the interference of a given IBDV vaccine candidate on NDV vaccine immune response. A Ph. Eur.-derived protocol was thus implemented to quantify immunosuppression induced by one mild, two intermediate, and four intermediate-plus live-attenuated IBD vaccines as well as a pathogenic viral strain. This protocol confirmed the respective immunosuppressive properties of those vaccines and virus. In the search for a more ethical alternative to Ph. Eur.-based protocols, two strategies were explored. First, ex vivo viral replication of those vaccines and the pathogenic strain in stimulated chicken primary bursal cells was assessed. Replication levels were not strictly correlated to immunosuppression observed in vivo. Second, changes in blood leukocyte counts in chicks were monitored using a Ph. Eur. - type protocol prior to lethal NDV challenge. In case of intermediate-plus vaccines, the drop in B cells counts was more severe. Counting blood B cells may thus represent a highly quantitative, faster, and ethical strategy than NDV challenge to assess the immunosuppression induced in chickens by live-attenuated IBD vaccines.

7.
Avian Pathol ; 51(5): 445-456, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35634647

RESUMEN

Avian pathogenic Escherichia coli (APEC) cause extra-intestinal infections called colibacillosis, which is the dominant bacterial disease in broilers. To date, given the diversity of APEC strains and the need for an acceptable level of protection in day-old chicks, no satisfactory commercial vaccine is available. As part of a French nationwide project, we selected three representative strains among several hundred APEC that cause colibacillosis disease. We first performed experiments to develop colibacillosis in vivo models, using an inoculum of 3 × 107 CFU of each E. coli strain per chick. Two APEC strains (19-381 and 19-383-M1) were found to be highly virulent for day-old chicks, whereas the third strain (19-385-M1) induced no mortality nor morbidity.We then produced an autogenous vaccine using the (Llyod, 1982; MaCQueen, 1967) 19-381 and 19-383-M1 APEC strains and a passive immunization trial was undertaken. Specific-pathogen-free Leghorn hens were vaccinated twice 2 weeks apart, the control group receiving a saline solution. The vaccinated and control hens exhibited no clinical signs, and egg production and fertility of both groups were similar. Fertile eggs were collected for 2 weeks after the second vaccination and chicks were obtained. After challenge with each APEC (19-381 and 19-383-M1), chicks appeared to be partially protected from infection with the 19-383-M1 strain, with 40% mortality compared with 80% for the non-vaccinated chicks. No protection was found when the chicks were challenged with the 19-381 strain. Now, further work is needed to consider some aspects: severity of the pathogen challenge model, persistence of the protection, number of APEC strains in the autogenous vaccine, choice of adjuvants, and heterologous protection by the vaccine made from strain 19-383-M1.RESEARCH HIGHLIGHTS Three APEC strains were characterized and selected to develop in vivo models of colibacillosis.A bivalent autogenous vaccine was produced and a passive immunization trial was carried out.Protection of chicks was demonstrated when challenged with the 19-383-M1 APEC strain (homologous challenge).Further work is needed in particular to evaluate the protection against heterologous challenge.


Asunto(s)
Autovacunas , Infecciones por Escherichia coli , Vacunas contra Escherichia coli , Enfermedades de las Aves de Corral , Animales , Pollos/microbiología , Escherichia coli , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Femenino , Inmunización Pasiva/veterinaria , Óvulo , Enfermedades de las Aves de Corral/microbiología
8.
BMC Vet Res ; 17(1): 257, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321003

RESUMEN

BACKGROUND: Rabbit haemorrhagic disease virus Lagovirus europaeus/GI.1d variant (GI.1d/RHDV) was identified in 1990 in France, and until the emergence of the new genotype GI.2, it was the main variant circulating in the country. The early stages of RHDV infection have been described in a few studies of rabbits experimentally infected with earlier strains, but no information was given on the minimum infective dose. We report the genomic and phenotypic characterisation of a GI.1d/RHDV strain collected in 2000 in France (GI.1d/00-21). RESULTS: We performed in vivo assays in rabbits to study virus replication kinetics in several tissues at the early stage of infection, and to estimate the minimum infective dose. Four tested doses, negligible (10- 1 viral genome copies), low (104), high (107) and very high (1011) were quantified using a method combining density gradient centrifugation of the viral particles and an RT-qPCR technique developed to quantify genomic RNA (gRNA). The GI.1d/00-21 genome showed the same genomic organisation as other lagoviruses; however, a substitution in the 5' untranslated region and a change in the potential p23/2C-like helicase cleavage site were observed. We showed that the liver of one of the two rabbits inoculated via the oral route was infected at 16 h post-infection and all tissues at 39 h post-infection. GI.1d/00-21 induced classical RHD signs (depression) and lesions (haemorrhage and splenomegaly). Although infective dose estimation should be interpreted with caution, the minimum infective dose that infected an inoculated rabbit was lower or equal to 104 gRNA copies, whereas between 104 and 107 gRNA copies were required to also induce mortality. CONCLUSIONS: These results provide a better understanding of GI.1d/RHDV infection in rabbits. The genome analysis showed a newly observed mutation in the 5' untranslated region of a lagovirus, whose role remains unknown. The phenotypic analysis showed that the pathogenicity of GI.1d/00-21 and the replication kinetics in infected organs were close to those reported for the original GI.1 strains, and could not alone explain the observed selective advantage of the GI.1d strains. Determining the minimum dose of viral particles required to cause mortality in rabbits is an important input for in vivo studies.


Asunto(s)
Infecciones por Caliciviridae/veterinaria , Variación Genética , Genoma Viral , Virus de la Enfermedad Hemorrágica del Conejo/genética , Conejos/virología , Replicación Viral , Animales , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Francia/epidemiología , Filogenia , ARN Viral/genética
9.
Front Microbiol ; 12: 678563, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177862

RESUMEN

The avibirnavirus infectious bursal disease virus (IBDV) is responsible for a highly contagious and sometimes lethal disease of chickens (Gallus gallus). IBDV genetic variation is well-described for both field and live-attenuated vaccine strains, however, the dynamics and selection pressures behind this genetic evolution remain poorly documented. Here, genetically homogeneous virus stocks were generated using reverse genetics for a very virulent strain, rvv, and a vaccine-related strain, rCu-1. These viruses were serially passaged at controlled multiplicities of infection in several biological systems, including primary chickens B cells, the main cell type targeted by IBDV in vivo. Passages were also performed in the absence or presence of a strong selective pressure using the antiviral nucleoside analog 7-deaza-2'-C-methyladenosine (7DMA). Next Generation Sequencing (NGS) of viral genomes after the last passage in each biological system revealed that (i) a higher viral diversity was generated in segment A than in segment B, regardless 7DMA treatment and viral strain, (ii) diversity in segment B was increased by 7DMA treatment in both viruses, (iii) passaging of IBDV in primary chicken B cells, regardless of 7DMA treatment, did not select cell-culture adapted variants of rvv, preserving its capsid protein (VP2) properties, (iv) mutations in coding and non-coding regions of rCu-1 segment A could potentially associate to higher viral fitness, and (v) a specific selection, upon 7DMA addition, of a Thr329Ala substitution occurred in the viral polymerase VP1. The latter change, together with Ala270Thr change in VP2, proved to be associated with viral attenuation in vivo. These results identify genome sequences that are important for IBDV evolution in response to selection pressures. Such information will help tailor better strategies for controlling IBDV infection in chickens.

10.
Sci Rep ; 10(1): 13298, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764663

RESUMEN

Infectious Bursal Disease Virus (IBDV), a member of the Birnaviridae family, causes an immunosuppressive disease in young chickens. Although several reverse genetics systems are available for IBDV, the isolation of most field-derived strains, such as very virulent IBDV (vvIBDV) and their subsequent rescue, has remained challenging due to the lack of replication of those viruses in vitro. Such rescue required either the inoculation of animals, embryonated eggs, or the introduction of mutations in the capsid protein (VP2) hypervariable region (HVR) to adapt the virus to cell culture, the latter option concomitantly altering its virulence in vivo. We describe an improved ex vivo IBDV rescue system based on the transfection of an avian cell line with RNA polymerase II-based expression vectors, combined with replication on primary chicken bursal cells, the main cell type targeted in vivo of IBDV. We validated this system by rescuing to high titers two recombinant IBDV strains: a cell-culture adapted attenuated strain and a vvIBDV. Sequencing of VP2 HVR confirmed the absence of unwanted mutations that may alter the biological properties of the recombinant viruses. Therefore, this approach is efficient, economical, time-saving, reduces animal suffering and can be used to rescue other non-cell culture adapted IBDV strains.


Asunto(s)
ADN Recombinante/genética , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus de la Enfermedad Infecciosa de la Bolsa/patogenicidad , ARN Polimerasa II/metabolismo , Animales , Linfocitos B/virología , Proteínas de la Cápside/genética , Línea Celular , Pollos , Virulencia
11.
Avian Pathol ; 49(6): 678-688, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32835506

RESUMEN

We explored the between-group and temporal variations in the intestinal Escherichia coli populations of broilers under experimental conditions, taking both antimicrobial resistance and virulence into consideration. Four replicates of 45 commercial chicks were reared in four animal facilities. On their first day of life (Day 0), they were orally inoculated with two extended-spectrum-cephalosporin-resistant (ESCR) E. coli (2.72 log10 CFU of a bla CMY-2- and 2.55 log10 CFU of a bla CTX-M-carrying E. coli). Faecal samples were then collected weekly and caecal samples were obtained from birds sacrificed on Days 21 or 42. The total, ESC-, ciprofloxacin- and gentamicin-resistant E. coli populations were enumerated on MacConkey (MC) and MC-supplemented media, and eight virulence-associated genes (VAGs) (iroN, iutA, iss, ompT, hlyF, vat, frzorf4 , and fyuA) were sought by PCR on isolates obtained on MC agar. The results showed significant between-group differences in the size of the resistant sub-populations and the presence of VAGs. Contrary to bla CTX-M-positive strains, bla CMY-positive strains persisted up to Day 42, but represented only a minor fraction of the total E. coli population. The ESC-, gentamicin- and ciprofloxacin-resistant populations decreased over time. Isolates obtained during the first week contained a mean of 5.1 VAGs. The percentages of some VAG profiles differed between faecal isolates on Day 41 and caecal isolates on Day 42. The fluctuations or differences between E. coli isolates according to group, age, and faecal or caecal origin need to be considered when designing experimental protocols and seeking to improve colibacillosis control. RESEARCH HIGHLIGHTS Temporal variations in the intestinal E. coli populations of broilers was studied. The antibiotic-resistant populations decreased over time. Virulence profiles differed between faecal isolates on Day 41 and caecal isolates on Day 42. Strains with the highest numbers of virulence genes were present during the first days.


Asunto(s)
Pollos/microbiología , Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/veterinaria , Escherichia coli/aislamiento & purificación , Enfermedades de las Aves de Corral/microbiología , Animales , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/microbiología , Heces/microbiología , Tracto Gastrointestinal/microbiología , Virulencia
12.
Avian Pathol ; 48(4): 311-318, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30777452

RESUMEN

To date, four subgroups of avian metapneumoviruses have been defined (AMPV-A, B, C and D) based on genetic and antigenic differences. The extent of infection in the three principal species (turkeys, chickens and ducks) by these subgroups is, however, not well defined. Here, a series of controlled and ethically approved experimental infections were performed in specific pathogen-free turkeys, chickens and ducks with each of the four AMPV subgroups. For subgroup C, one strain isolated from turkeys in the USA (turkey AMPV-C) and one isolated from ducks in France (duck AMPV-C) were compared. Globally, these extensive experimental trials demonstrated that AMPV-A, B, turkey C and D were well adapted to Galliformes, especially turkeys; however, chickens showed limited clinical signs and differences in seroconversion and transmission. Notably, chickens did not transmit AMPV-A to contacts and were shown for the first time to be susceptible to AMPV-D. The duck AMPV-C was well adapted to ducks; however, chickens and turkeys seroconverted and were positive by virus isolation. In addition, seroconversion of contact turkeys to duck AMPV-C demonstrated horizontal transmission of this virus in a non-palmiped species under our experimental conditions. Interestingly, in chickens and turkeys, duck AMPV-C isolation was possible despite a lack of detection of viral RNA. Likewise, the turkey AMPV-C virus was well adapted to turkeys yet was also isolated from chickens despite a lack of detection of viral RNA. These results would suggest a selection for viral genetic sequences that differ from the original strain upon adaptation to a 'non-conventional host'.


Asunto(s)
Pollos , Patos , Metapneumovirus , Infecciones por Paramyxoviridae/veterinaria , Enfermedades de las Aves de Corral/virología , Pavos , Animales , Anticuerpos Antivirales/aislamiento & purificación , Embrión de Pollo , Chlorocebus aethiops , Especificidad del Huésped , Metapneumovirus/clasificación , Metapneumovirus/genética , Metapneumovirus/inmunología , Metapneumovirus/aislamiento & purificación , Infecciones por Paramyxoviridae/virología , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Pase Seriado/veterinaria , Organismos Libres de Patógenos Específicos , Células Vero
13.
Avian Pathol ; 48(3): 245-254, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30663339

RESUMEN

Infectious bursal disease virus (IBDV) is the causative agent of a highly contagious immunosuppressive disease affecting young chickens. The recently described "distinct IBDV" (dIBDV) genetic lineage encompasses a group of worldwide distributed strains that share conserved genetic characteristics in both genome segments making them unique within IBDV strains. Phenotypic characterization of these strains is scarce and limited to Asiatic and European strains collected more than 15 years ago. The present study aimed to assess the complete and comprehensive phenotypic characterization of a recently collected South American dIBDV strain (1/chicken/URY/1302/16). Genetic analyses of both partial genome segments confirmed that this strain belongs to the dIBDV genetic lineage and that it is not a reassortant. Antigenic analysis with monoclonal antibodies indicated that this strain has a particular antigenic profile, similar to that obtained in a dIBDV strain from Europe (80/GA), which differs from those previously found in the traditional classic, variant and very virulent strains. Chickens infected with the South American dIBDV strain showed subclinical infections but had a marked bursal atrophy. Further analysis using Newcastle disease virus-immunized chickens, previously infected with the South American and European dIBDV strains, demonstrated their severe immunosuppressive effect. These results indicate that dIBDV strains currently circulating in South America can severely impair the immune system of chickens, consequently affecting the local poultry industry. Our study provides new insights into the characteristics and variability of this global genetic lineage and is valuable to determine whether specific control measures are required for the dIBDV lineage. Research Highlights A South American strain of the dIBDV lineage was phenotypically characterized. The strain produced subclinical infections with a marked bursal atrophy. Infected chickens were severely immunosuppressed. The dIBDV strains are antigenically divergent from other IBDV lineages.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Pollos/virología , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Enfermedades de las Aves de Corral/virología , Animales , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/virología , Pollos/inmunología , Genotipo , Inmunogenicidad Vacunal , Terapia de Inmunosupresión/veterinaria , Virus de la Enfermedad Infecciosa de la Bolsa/aislamiento & purificación , Virus de la Enfermedad Infecciosa de la Bolsa/patogenicidad , Fenotipo , Enfermedades de las Aves de Corral/inmunología , Virulencia
14.
Transbound Emerg Dis ; 66(1): 234-242, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30146717

RESUMEN

Numerous viruses, mostly in mixed infections, have been associated worldwide with poult enteritis complex (PEC). In 2008 a coronavirus (Fr-TCoV 080385d) was isolated in France from turkey poults exhibiting clinical signs compatible with this syndrome. In the present study, the median infectious dose (ID50 ), transmission kinetics and pathogenicity of Fr-TCoV were investigated in 10-day-old SPF turkeys. Results revealed a titre of 104.88 ID50 /ml with 1 ID50 /ml being beyond the limit of genome detection using a well-characterized qRT-PCR for avian coronaviruses. Horizontal transmission of the virus via the airborne route was not observed however, via the oro-faecal route this proved to be extremely rapid (one infectious individual infecting another every 2.5 hr) and infectious virus was excreted for at least 6 weeks in several birds. Histological examination of different zones of the intestinal tract of the Fr-TCoV-infected turkeys showed that the virus had a preference for the lower part of the intestinal tract with an abundance of viral antigen being present in epithelial cells of the ileum, caecum and bursa of Fabricius. Viral antigen was also detected in dendritic cells, monocytes and macrophages in these areas, which may indicate a potential for Fr-TCoV to replicate in antigen-presenting cells. Together these results highlight the importance of good sanitary practices in turkey farms to avoid introducing minute amounts of virus that could suffice to initiate an outbreak, and the need to consider that infected individuals may still be infectious long after a clinical episode, to avoid virus dissemination through the movements of apparently recovered birds.


Asunto(s)
Número Básico de Reproducción , Infecciones por Coronavirus/veterinaria , Coronavirus del Pavo/fisiología , Enfermedades de las Aves de Corral/transmisión , Pavos , Animales , Antígenos Virales/análisis , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Francia , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/virología , Organismos Libres de Patógenos Específicos
15.
Vaccine ; 36(16): 2119-2125, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29555216

RESUMEN

Vaccination of broilers is one of the potential ways to decrease Campylobacter intestinal loads and therefore may reduce human disease incidence. Despite many studies, no efficient vaccine is available yet. Using the reverse vaccinology strategy, we recently identified new vaccine candidates whose immune and protective capacities need to be evaluated in vivo. Therefore, the goal of the present study was to develop and evaluate an avian subunit vaccine protocol for poultry against Campylobacter jejuni. For this, flagellin was used as vaccine antigen candidate. A DNA prime/protein boost regimen was effective in inducing a massive protective immune response against C. jejuni in specific pathogen free Leghorn chickens. Contrastingly, the same vaccine regimen stimulated the production of antibodies against Campylobacter in conventional Ross broiler chickens harbouring maternally derived antibodies against Campylobacter, but not the control of C. jejuni colonization. These results highlight the strength of the vaccine protocol in inducing protective immunity and the significance of the avian strain and/or immune status in the induction of this response. Nevertheless, as such the vaccine protocol is not efficient in broilers to induce protection and has to be adapted; this has been done in one of our recent published work.


Asunto(s)
Vacunas Bacterianas/inmunología , Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas de Subunidad/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Vacunas Bacterianas/administración & dosificación , Pollos , Inmunización , Inmunización Secundaria , Proteínas Recombinantes , Vacunas de Subunidad/administración & dosificación
16.
Infect Genet Evol ; 60: 48-57, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29409800

RESUMEN

Infectious bursal disease (IBD) is an immunosuppressive viral disease, present worldwide, which causes mortality and immunosuppression in young chickens. The causative agent, the Avibirnavirus IBDV, is a non-enveloped virus whose genome consists of two segments (A and B) of double-stranded RNA. Different pathotypes of IBDV exist, ranging from attenuated vaccine strains to very virulent viruses (vvIBDV). In Algeria, despite the prophylactic measures implemented, cases of IBD are still often diagnosed clinically and the current molecular epidemiology of IBDV remains unknown. The presence of the virus and especially of strains genetically close to vvIBDV was confirmed in 2000 by an unpublished OIE report. In this study, nineteen IBDV isolates were collected in Algeria between September 2014 and September 2015 during clinical outbreaks. These isolates were analyzed at the genetic, antigenic and pathogenic levels. Our results reveal a broad genetic and phenotypic diversity of pathogenic IBDV strains in Algeria, with, i) the circulation of viruses with both genome segments related to European vvIBDV, which proved as pathogenic for specific pathogen-free chickens as vvIBDV reference strain, ii) the circulation of viruses closely related - yet with a specific segment B - to European vvIBDV, their pathogenicity being lower than reference vvIBDV, iii) the detection of reassortant viruses whose segment A was related to vvIBDV whereas their segment B did not appear closely related to any reference sequence. Interestingly, the pathogenicity of these potentially reassortant strains was comparable to that of reference vvIBDV. All strains characterized in this study exhibited an antigenicity similar to the cognate reference IBDV strains. These data reveal the continuous genetic evolution of IBDV strains in Algerian poultry through reassortment and acquisition of genetic material of unidentified origin. Continuous surveillance of the situation as well as good vaccination practice associated with appropriate biosecurity measures are necessary for disease control.


Asunto(s)
Infecciones por Birnaviridae/virología , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus de la Enfermedad Infecciosa de la Bolsa/patogenicidad , Enfermedades de las Aves de Corral/virología , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Argelia , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Infecciones por Birnaviridae/inmunología , Pollos/virología , Virus de la Enfermedad Infecciosa de la Bolsa/clasificación , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Epidemiología Molecular , Filogenia , Enfermedades de las Aves de Corral/inmunología , Virus Reordenados/clasificación , Virus Reordenados/inmunología
17.
Avian Pathol ; 47(2): 179-188, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29039212

RESUMEN

Infectious bursal disease virus (IBDV) is a Birnaviridae family member of economic importance for poultry. This virus infects and destroys developing B lymphocytes in the cloacal bursa, resulting in a potentially fatal or immunosuppressive disease in chickens. Naturally occurring viruses and many vaccine strains are not able to grow in in vitro systems without prior adaptation, which often affects viral properties such as virulence. Primary bursal cells, which are the main target cells of lymphotropic IBDV in vivo, may represent an attractive system for the study of IBDV. Unfortunately, bursal cells isolated from bursal follicles undergo apoptosis within hours following their isolation. Here, we demonstrate that ex vivo stimulation of bursal cells with phorbol 12-myristate 13-acetate maintains their viability long enough to allow IBDV replication to high titres. A wide range of field-derived or vaccine serotype 1 IBDV strains could be titrated in these phorbol 12-myristate 13-acetate -stimulated bursal cells and furthermore were permissive for replication of non-cell-culture-adapted viruses. These cells also supported multistep replication experiments and flow cytometry analysis of infection. Ex vivo-stimulated bursal cells therefore offer a promising tool in the study of IBDV.


Asunto(s)
Bolsa de Fabricio/citología , Pollos , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Cultivo de Virus/veterinaria , Animales , Supervivencia Celular , Células Cultivadas , Acetato de Tetradecanoilforbol/farmacología , Cultivo de Virus/métodos
18.
PLoS One ; 12(11): e0188472, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176789

RESUMEN

Campylobacter is the leading cause of human bacterial gastroenteritis in the European Union. Birds represent the main reservoir of the bacteria, and human campylobacteriosis mainly occurs after consuming and/or handling poultry meat. Reducing avian intestinal Campylobacter loads should impact the incidence of human diseases. At the primary production level, several measures have been identified to reach this goal, including vaccination of poultry. Despite many studies, however, no efficient vaccine is currently available. We have recently identified new vaccine candidates using the reverse vaccinology strategy. This study assessed the in vivo immune and protective potential of six newly-identified vaccine antigens. Among the candidates tested on Ross broiler chickens, four (YP_001000437.1, YP_001000562.1, YP_999817.1, and YP_999838.1) significantly reduced cecal Campylobacter loads by between 2 and 4.2 log10 CFU/g, with the concomitant development of a specific humoral immune response. In a second trial, cecal load reductions results were not statistically confirmed despite the induction of a strong immune response. These vaccine candidates need to be further investigated since they present promising features.


Asunto(s)
Vacunas Bacterianas/inmunología , Campylobacter/inmunología , Animales , Pollos , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulinas/inmunología
19.
Avian Pathol ; 46(1): 19-27, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27400223

RESUMEN

Infectious bursal disease virus (IBDV, family Birnaviridae) is a bi-segmented double-stranded RNA virus for which two serotypes are described. Serotype 1 replicates in the bursa of Fabricius and causes an immunosuppressive and potentially fatal disease in young chickens. Serotype 2 is apathogenic in poultry species. Up to now, only one natural event of interserotypic reassortment has been described after the introduction of very virulent IBDV (vvIBDV) in the USA in 2009, resulting in an IBDV strain with its segment A related to vvIBDV and its segment B related to US serotype 2 strain OH. Here, we present the first European isolate illustrative of interserotypic reassortment. The reassorting isolate, named 100056, exhibits a genomic segment A typical of current European vvIBDV but a segment B close to European serotype 2 viruses, supporting an origin distinct from US strains. When inoculated into SPF chickens, isolate 100056 induced mild clinical signs in the absence of mortality but caused a severe bursal atrophy, which strongly suggests an immunosuppressive potential. These results illustrate that interserotypic reassortment is another mechanism that can create IBDV strains with a modified acute pathogenicity. As a consequence, and for a more precise inference of the possible phenotype, care should be taken that the molecular identification of IBDV strains is targeted to both genome segments.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Pollos/virología , Genoma Viral/genética , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Enfermedades de las Aves de Corral/virología , Virus Reordenados/inmunología , Animales , Infecciones por Birnaviridae/virología , Bolsa de Fabricio/virología , Evolución Molecular , Francia , Genómica , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus de la Enfermedad Infecciosa de la Bolsa/aislamiento & purificación , Virus de la Enfermedad Infecciosa de la Bolsa/patogenicidad , Fenotipo , Filogenia , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Virus Reordenados/patogenicidad , Análisis de Secuencia de ARN , Serogrupo , Organismos Libres de Patógenos Específicos , Virulencia
20.
Int J Food Microbiol ; 247: 9-17, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-27432696

RESUMEN

Campylobacteriosis is the most frequently reported zoonotic disease in humans in the EU since 2005. As chicken meat is the main source of contamination, reducing the level of Campylobacter in broiler chicken will lower the risk to consumers. The aim of this project was to evaluate the ability of Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers and to investigate the mechanisms that could be involved. Thirty broilers artificially contaminated with C. jejuni were treated by oral gavage with MRS broth or a bacterial suspension (107CFU) of Lb. salivarius SMXD51 (SMXD51) in MRS broth. At 14 and 35days of age, Campylobacter and Lb. salivarius loads were assessed in cecal contents. The impact of the treatment on the avian gut microbiota at day 35 was also evaluated. At day 14, the comparison between the control and treated groups showed a significant reduction (P<0.05) of 0.82 log. After 35days, a significant reduction (P<0.001) of 2.81 log in Campylobacter loads was observed and 73% of chickens treated with the culture exhibited Campylobacter loads below 7log10CFU/g. Taxonomic analysis revealed that SMXD51 treatment induced significant changes (P<0.05) in a limited number of bacterial genera of the avian gut microbiota and partially limited the impact of Campylobacter on Anaerotruncus sp. decrease and Subdoligranulum sp. increase. Thus, SMXD51 exhibits an anti-Campylobacter activity in vivo and can partially prevent the impact of Campylobacter on the avian gut microbiota.


Asunto(s)
Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/fisiología , Ligilactobacillus salivarius/fisiología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Probióticos/administración & dosificación , Animales , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/microbiología , Ciego/microbiología , Pollos , Humanos , Enfermedades de las Aves de Corral/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...