Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 1106401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726564

RESUMEN

Human cytomegaloviruses (HCMVs) employ many different mechanisms to escape and subvert the host immune system, including expression of the viral IgG Fcγ receptors (vFcγRs) RL11 (gp34), RL12 (gp95), RL13 (gpRL13), and UL119 (gp68) gene products. The role of vFcγRs in HCMV pathogenesis has been reported to operate in infected cells by interfering with IgG-mediated effector functions. We found that gp34 and gp68 are envelope proteins that bind and internalize human IgGs on the surface of infected cells. Internalized IgGs are then transported on the envelope of viral particles in a vFcR-dependent mechanism. This mechanism is also responsible for the incorporation on the virions of the anti-gH neutralizing antibody MSL-109. Intriguingly, we show that gp68 is responsible for MSL-109 incorporation, but it is dispensable for other anti-HCMV antibodies that do not need this function to be transported on mature virions. HCMV-infected cells grown in presence of anti-HCMV monoclonal antibodies generate a viral progeny still infective and possible to be neutralized. This is the first example of a virus carrying neutralizing IgGs on its surface and their possible role is discussed.

2.
J Virol ; 95(15): e0220720, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011552

RESUMEN

Heterodimers of glycoproteins H (gH) and L (gL) comprise a basal element of the viral membrane fusion machinery conserved across herpesviruses. In human cytomegalovirus (HCMV), the glycoprotein UL116 assembles onto gH at a position similar to that occupied by gL, forming a heterodimer that is incorporated into virions. Here, we show that UL116 promotes the expression of gH/gL complexes and is required for the efficient production of infectious cell-free virions. UL116-null mutants show a 10-fold defect in production of infectious cell-free virions from infected fibroblasts and epithelial cells. This defect is accompanied by reduced expression of two disulfide-linked gH/gL complexes that play crucial roles in viral entry: the heterotrimer of gH/gL with glycoprotein O (gO) and the pentameric complex of gH/gL with UL128, UL130, and UL131. Kifunensine, a mannosidase inhibitor that interferes with endoplasmic reticulum (ER)-associated degradation (ERAD) of terminally misfolded glycoproteins, restored levels of gH, gL, and gO in UL116-null-infected cells, indicating that constituents of HCMV gH complexes are unstable in the absence of UL116. Further, we find that gH/UL116 complexes are abundant in virions, since a major gH species not covalently linked to other glycoproteins, which has long been observed in the literature, is detected from wild-type but not UL116-null virions. Interestingly, UL116 coimmunoprecipitates with UL148, a viral ER-resident glycoprotein that attenuates ERAD of gO, and we observe elevated levels of UL116 in UL148-null virions. Collectively, our findings argue that UL116 is a chaperone for gH that supports the assembly, maturation, and incorporation of gH/gL complexes into virions. IMPORTANCE HCMV is a betaherpesvirus that causes dangerous opportunistic infections in immunocompromised patients as well as in the immune-naive fetus and preterm infants. The potential of the virus to enter new host cells is governed in large part by two alternative viral glycoprotein H (gH)/glycoprotein L (gL) complexes that play important roles in entry: gH/gL/gO and gH/gL/UL128-131. A recently identified virion gH complex, comprised of gH bound to UL116, adds a new layer of complexity to the mechanisms that contribute to HCMV infectivity. Here, we show that UL116 promotes the expression of gH/gL complexes and that UL116 interacts with the viral ER-resident glycoprotein UL148, a factor that supports the expression of gH/gL/gO. Overall, our results suggest that UL116 is a chaperone for gH. These findings have important implications for understanding HCMV cell tropism as well as for the development of vaccines against the virus.


Asunto(s)
Citomegalovirus/crecimiento & desarrollo , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/metabolismo , Alcaloides/farmacología , Línea Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/patología , Estrés del Retículo Endoplásmico/fisiología , Inhibidores Enzimáticos/farmacología , Regulación Viral de la Expresión Génica/genética , Células HEK293 , Humanos , Proteínas Virales de Fusión/genética , Internalización del Virus
3.
Front Microbiol ; 12: 630121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889136

RESUMEN

Human cytomegalovirus (HCMV) relies in large part upon the viral membrane fusion glycoprotein B and two alternative gH/gL complexes, gH/gL/gO (Trimer) and gH/gL/UL128/UL130/UL131A (Pentamer) to enter into cells. The relative amounts of Trimer and Pentamer vary among HCMV strains and contribute to differences in cell tropism. Although the viral ER resident protein UL148 has been shown to interact with gH to facilitate gO incorporation, the mechanisms that favor the assembly and maturation of one complex over another remain poorly understood. HCMV virions also contain an alternative non-disulfide bound heterodimer comprised of gH and UL116 whose function remains unknown. Here, we show that disruption of HCMV gene UL116 causes infectivity defects of ∼10-fold relative to wild-type virus and leads to reduced expression of both gH/gL complexes in virions. Furthermore, gH that is not covalently bound to other viral glycoproteins, which are readily detected in wild-type HCMV virions, become undetectable in the absence of UL116 suggesting that the gH/UL116 complex is abundant in virions. We find evidence that UL116 and UL148 interact during infection indicating that the two proteins might cooperate to regulate the abundance of HCMV gH complexes. Altogether, these results are consistent with a role of UL116 as a chaperone for gH during the assembly and maturation of gH complexes in infected cells.

4.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799739

RESUMEN

The chromatin remodeler SWI/SNF is an important participant in gene activation, functioning predominantly by opening the chromatin structure on promoters and enhancers. Here, we describe its novel mode of action in which SWI/SNF factors mediate the targeted action of an enhancer. We studied the functions of two signature subunits of PBAP subfamily, BAP170 and SAYP, in Drosophila. These subunits were stably tethered to a transgene reporter carrying the hsp70 core promoter. The tethered subunits mediate transcription of the reporter in a pattern that is generated by enhancers close to the insertion site in multiple loci throughout the genome. Both tethered SAYP and BAP170 recruit the whole PBAP complex to the reporter promoter. However, we found that BAP170-dependent transcription is more resistant to the depletion of other PBAP subunits, suggesting that BAP170 may play a more critical role in establishing enhancer-dependent transcription.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos/genética , Factores de Transcripción/genética , Transcripción Genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Humanos , Hibridación in Situ/métodos , Modelos Genéticos , Regiones Promotoras Genéticas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional
5.
Virology ; 540: 57-65, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31739185

RESUMEN

Among the Herpesviridae, human cytomegalovirus (HCMV) owns the largest genome and displays a huge coding potential. Here, we characterized the UL5 gene product (pUL5) of the clinical isolate TR strain. The protein was predicted as a 166-amino-acid membrane protein with a theoretical mass of 19 kDa. Recombinant virus expressing pUL5 with a tag allowed the identification of two pUL5 non-glycosylated species of approximately 19 and 9 kDa, expressed with early and late kinetic respectively. Experiments in infection confirmed that the lower molecular weight species was translated from an internal ATG in the UL5 open reading frame. Confocal microscopy analysis showed that pUL5 localized within the assembly compartment, but is not incorporated in the virion, as shown by Western blot on purified viral particles. Finally, pull-down experiments coupled with mass spectrometry analysis identified IQGAP1 as a pUL5 interactor, giving new hints on possible roles of pUL5 during HCMV infection.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Secuencia de Aminoácidos , Línea Celular , Células Cultivadas , Citomegalovirus/aislamiento & purificación , Citomegalovirus/ultraestructura , Regulación Viral de la Expresión Génica , Humanos , Sistemas de Lectura Abierta , Unión Proteica , Transporte de Proteínas , ARN Viral , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...