Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37688237

RESUMEN

The need to recycle carbon-fibre-reinforced composite polymers (CFRP) has grown significantly to reduce the environmental impact generated by their production. To meet this need, thermoreversible epoxy matrices have been developed in recent years. This study investigates the performance of an epoxy vitrimer made by introducing a metal catalyst (Zn2+) and its carbon fibre composites, focusing on the healing capability of the system. The dynamic crosslinking networks endow vitrimers with interesting rheological behaviour; the capability of the formulated resin (AV-5) has been assessed by creep tests. The analysis showed increased molecular mobility above a topology freezing temperature (Tv). However, the reinforcement phase inhibits the flow capability, reducing the flow. The fracture behaviour of CFRP made with the vitrimeric resin has been investigated by Mode I and Mode II tests and compared with the conventional system. The repairability of the vitrimeric CFRP has been investigated by attempting to recover the delaminated samples, which yielded unsatisfactory results. Moreover, the healing efficiency of the modified epoxy composites has been assessed using the vitrimer as an adhesive layer. The joints were able to recover about 84% of the lap shear strength of the pristine system.

2.
Polymers (Basel) ; 15(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37765699

RESUMEN

In the present work, a commercial epoxy based on epoxy anhydride and tertiary amine was modified by a metallic catalyst (Zn2+) to induce vitrimeric behavior by promoting the transesterification reaction. The effect of two different epoxy/acid ratios (1 and 0.6) at two different zinc acetate amounts (Zn(Ac)2) on the thermomechanical and viscoelastic performances of the epoxy vitrimers were investigated. Creep experiments showed an increase in molecular mobility above the critical "Vitrimeric" temperature (Tv) of 170 °C proportionally to the amount of Zn(Ac)2. A procedure based on Burger's model was set up to investigate the effect of catalyst content on the vitrimer ability to flow as the effect of the dynamic exchange reaction. The analysis showed that in the case of a balanced epoxy/acid formulation, the amount of catalyst needed for promoting molecular mobility is 5%. This system showed a value of elastic modulus and dynamic viscosity at 170 °C of 9.50 MPa and 2.23 GPas, respectively. The material was easily thermoformed in compression molding, paving the way for the recyclability and weldability of the thermoset system.

3.
Materials (Basel) ; 16(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36902890

RESUMEN

Polymeric coatings represent a well-established protection system that provides a barrier between a metallic substrate and the environment. The development of a smart organic coating for the protection of metallic structures in marine and offshore applications is a challenge. In the present study, we investigated the use of self-healing epoxy as an organic coating suitable for metallic substrates. The self-healing epoxy was obtained by mixing Diels-Alder (D-A) adducts with a commercial diglycidyl ether of bisphenol-A (DGEBA) monomer. The resin recovery feature was assessed through morphological observation, spectroscopic analysis, and mechanical and nanoindentation tests. Barrier properties and anti-corrosion performance were evaluated through electrochemical impedance spectroscopy (EIS). The film on a metallic substrate was scratched and subsequently repaired using proper thermal treatment. The morphological and structural analysis confirmed that the coating restored its pristine properties. In the EIS analysis, the repaired coating exhibited diffusive properties similar to the pristine material, with a diffusivity coefficient of 1.6 × 10-6 cm2/s (undamaged system 3.1 × 10-6 cm2/s), confirming the restoration of the polymeric structure. These results reveal that a good morphological and mechanical recovery was achieved, suggesting very promising applications in the field of corrosion-resistant protective coatings and adhesives.

4.
Biomater Adv ; 142: 213169, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36302329

RESUMEN

Microneedle (MN) patches are highly efficient and versatile tools for transdermal drug administration, in particular for pain-free, self-medication and rapid local applications. Diffraction ultraviolet (UV) light lithography offers an advanced method in fabricating poly(ethylene glycol)-based MNs with different shapes, by changing both the UV-light exposure time and photomask design. The exposure time interval is limited at obtaining conical structures with aspect ratio < 1:3, otherwise MNs exhibit reduced fracture load and poor indentation ability, not suitable for practical application. Therefore, this work is focused on a systematic analysis of the MN's base shapes effects on the structural characteristics, skin penetration and drug delivery. Analyzing four different base shapes (circle, triangle, square and star), it has been found that the number of vertices in the polygon base heavily affects these properties. The star-like MNs reveal the most efficient skin penetration ability (equal to 40 % of -their length), due to the edges action on the skin during the perforation. Furthermore, the quantification of the drug delivered by the MNs through ex-vivo porcine skin shows that the amounts of small molecules released over 24 h by star-like MNs coated by local anesthetic (Lidocaine) and an anti-inflammatory (Diclofenac epolamine) drugs are 1.5× and 2× higher than the circular-MNs, respectively.


Asunto(s)
Agujas , Piel , Porcinos , Animales , Preparaciones Farmacéuticas , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos
5.
Carbohydr Polym ; 290: 119416, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35550784

RESUMEN

Despite recent progress in graphene-based aerogels, challenges such as low mechanical strength and adsorption efficiency are still remaining. Here the reduced graphene oxide (rGO)/chitosan (CS) composite aerogel microspheres (rGCAMs) with center-diverging microchannel structures were developed by electrospraying and freeze-drying method. The optimized rGCAMs exhibit a high Young's modulus of 197 kPa and can support ~75,000 times its own weight, due to the cross-linking of CS by glutaraldehyde. Meanwhile, the rGCAMs can maintain high adsorption capacity for 15 cyclic tests due to its excellent mechanical strength. The oil adsorption kinetics and isotherms of rGCAMs follow the pseudo-second-order kinetic equation and the Langmuir model, respectively. The whole adsorption process is influenced by the oil diffusion in the liquid matrix and also in the intra-particle of aerogel microspheres. Moreover, rGCAMs can also be used to separate both surfactant-stabilized water-in-oil and oil-in-water emulsions through demulsification. The high-strength, recyclable and separation-efficient rGCAMs can be a potential candidate for oily wastewater treatment.


Asunto(s)
Quitosano , Contaminantes Ambientales , Grafito , Contaminantes Químicos del Agua , Adsorción , Quitosano/química , Grafito/química , Microesferas , Aceites , Agua , Contaminantes Químicos del Agua/química
6.
ACS Appl Mater Interfaces ; 4(1): 150-7, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22117597

RESUMEN

A multilayer photoactive coating containing surface fluorinated TiO(2) nanoparticles and hybrid matrices by sol gel approach based on renewable chitosan was applied on poly(lactic acid) (PLA) film by a step wise spin-coating method. The upper photoactive layer contains nano-sized functionalized TiO(2) particles dispersed in a siloxane based matrix. For the purpose of improving TiO(2) dispersion at the air interface coating surface, TiO(2) nanoparticles were modified by silane coupling agent 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FTS) with fluoro-organic side chains. An additional hybrid material consisting of chitosan (CS) cross-linked with 3-glycidyloxypropyl trimethoxy silane (GOTMS) was applied as interlayer between the PLA substrate and the upper photoactive coating to increase the adhesion and reciprocal affinity. The multilayer TiO(2)/CS-GOTMS coatings on PLA films showed a thickness of ~4-6 µm and resulted highly transparent. Their structure was exhaustively characterized by SEM, optical microscope, UV-vis spectroscopy and contact angle measurements. The photocatalytic activity of the multilayer coatings were investigated using methyl orange (MeO) as a target pollutant; the results showed that PLA films coated with surface fluorinated particles exhibit higher activity than films with neat particles, because of a better dispersion of TiO(2) particles. The mechanical properties of PLA and films coated with fluorinated particles, irradiated by UV light were also investigated; the results showed that the degradation of PLA substrate was markedly suppressed because of the UV adsorptive action of the multilayer coating.


Asunto(s)
Materiales Biocompatibles/química , Nanopartículas/química , Fotoquímica/métodos , Titanio/química , Quitosano/química , Halogenación
7.
J Appl Biomater Biomech ; 7(2): 132-40, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20799174

RESUMEN

PURPOSE: The effects of light curing units (LCU) and energy doses on the chemical and physical properties of a dental composite were investigated. METHODS: The effects on the chemical and physical properties of a bisphenol A diglycidylether methacrylate (Bis-GMA) based dental restorative material were evaluated through photospectrometry, differential scanning calorimetry, and mechanical measurements. RESULTS: The light curing conditions associated with direct and indirect restorations were replicated in vitro using optical investigation techniques. A slight attenuation resulted independently of the LCU and a strong attenuation was measured for the cement luting a thick inlay, as well as for the deepest layer of a composite filling increment. Calorimetric measurements indicated that the curing degree is very sensitive to the light energy dose rather than to the LCU. Mechanical testing showed a transient phase during which properties increased. The delay of the composite in reaching adequate properties is strongly dependent on the energy dose. CONCLUSIONS: It is recommended that composites subject to unfavorable light curing conditions undergo a prolonged light curing process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...